我的编程空间,编程开发者的网络收藏夹
学习永远不晚

数据分析:六大类分析方法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

数据分析:六大类分析方法

一、分解主题分析

所谓分解主题分析,是指对于不同分析要求,我们可以初步分为营销主题、财务主题、灵活主题等,然后将这些大的主题逐步拆解为不同小的方面来进行分析。

1.1营销主题

针对销售业务的分析,可以分解为客户分析、品类分析、区域分析、消费频率、价值链分析、促销、渠道、经销商、门店分析、同比环比、社交大数据分析、行业市场分析、行业景气指数的分析、市场占有率分析等。

1.2财务主题

针对财务业务的分析,可以分解为成本费用分析、利润、历史对比、财务法定报告及分析、资本性支出分析、财务预算分析、营销投入产出效率分析、会计核算分析、企业合并分析、偿债能力分析、盈利能力分析、经营现金流量分析等。

1.3灵活主题分析

包括价格分析、灵活区域分析、贡献度分析、供应商管理分析、采购价格分析、采购返利分析、采购对标分析、仓储数量流分析、存货分析、货损/质量分析、采购预测分析、产能分析、产量分析、EHS分析、价值链分析、供应链分析、运营成本分析、替代品分析及预测、销售渠道分析、员工薪酬福利分析、销售网点分析、招聘管理分析、培训管理分析、销售预测分析、下游物流分析、员工成本分析、购买者分析、员工绩效分析、终端退货分析、售后服务质量分析、人工竞争力分析等。

二、钻取分析

所谓钻取分析,是指改变维的层次,变换分析的粒度。按照方向方式分为:向上和向下钻取。向上钻取是在某一维上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;是自动生成汇总行的分析方法。向下钻取是从汇总数据深入到细节数据进行观察或增加新维的分析方法。

按照钻取的维度属性划分,可以分为按组织树钻取、按品类树钻取、按其他维度钻取。通过钻取的功能,使用户对数据能更深入了解,更容易发现问题,做出正确的决策。

2.1按组织树钻取

组织树可以按职能结构、层次结构、部门结构、职权结构来建立。要了解与职权相联系的业务情况,了解了职权的组织树就可以进行钻取分析,要了解部门销售业绩情况,可以按部门钻取分析等。

2.2按品类树钻取

所谓品类树就是指依据产品的特点,划分为的大、中、小分类结构。品类树是品类差异化的基础,必须结合经营管理的实际情况进行落地。例如要了解与物料大中小类相关的业务情况,可以按品类树钻取分析等。

2.3按其他维度钻取

例如对于各地区各年度的销售情况,可以生成地区与年度的合计行(向上钻取)。例如,用户分析“各地区、城市的销售情况”时,可以对某一个城市的销售额细分为各个年度的销售额,对某一年度的销售额,可以继续细分为各个季度的销售额(向下钻取)。

三、常规比较分析

所谓常规比较分析,是指一般比较常见的对比分析方法,例如有时间趋势分析、构成分析、同类比较分析、多指标分析、相关性分析、分组分析、象限分析等。

3.1时间趋势分析

所谓时间趋势分析是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列。它是一种定量预测方法,亦称简单外延方法,在统计学中作为一种常用的预测手段被广泛应用。例如,记录了某地区第一个月,第二个月,…,第N个月的降雨量,利用时间趋势分析方法,可以对未来各月的雨量进行预报。

3.2构成分析

在统计分组的基础上计算结构指标,来反映被研究总体构成情况的方法。应用构成分析法,可从不同角度研究投资构成及其变动趋势,观察投资构成与产业结构、社会需要构成的适应关系,可以揭示事物由量变到质变的具体过程。

3.3同类比较分析

在同类事物之间通过比较分析揭示其相异点而产生新认识的方法。在实际研究中人们经常会遇到一些表面上相同但实际上并不同的现象,如果对这些现象不仔细地进行比较研究,就有可能以假当真,或以真当假。因此,在分析研究中对新发现的现象不要轻易地归类,应该认真地反复进行比较研究,尤其对那些小的差异点,更不能放过。同类比较分析经常应用到与竞争对手分析中,例如食品行业同一类食品的销量比较,鞋服行业同一类型鞋子的对比分析等。

3.4多指标分析

为统计方法的一种,包含了许多的方法,最基本的为单指标,再延伸出来的多指标分析。统计资料中有多个指标同时存在时的统计分析,是统计学的重要分支,是单指标统计的发展。

3.5相关性分析

指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。相关性的元素之间需要存在一定的联系或者概率才可以进行相关性分析。

3.6分组分析

指将客体(问卷、特征、现实)按研究要求进行分类编组,使得同组客体之间的差别小于各种客体之间的差别,进而进行分析研究的方法。其特点在于不依赖于原始资料分布的正常性假设,可以按任意规律分布,在分析既包括数量资料,又包括质量资料的混合资料时尤为重要。

3.7象限分析

所谓象限分析是时间管理理论的一个重要观念是重点地把主要的精力和时间集中地放在处理那些重要但不紧急的工作上,这样可以做到未雨绸缪,防患于未然。在人们的日常工作中,很多时候往往有机会去很好地计划和完成一件事。但常常却又没有及时地去做,随着时间的推移,造成工作质量的下降。因此,应把主要的精力有重点地放在重要但不紧急这个“象限”的事务上是必要的。要把精力主要放在重要但不紧急的事务处理上,需要很好地安排时间。一个好的方法是建立预约。建立了预约,自己的时间才不会被别人所占据,从而有效地开展工作。在数据处理工作中,将事情按照紧急、不紧急、重要、不重要的排列组合分成四个象限,从而有效地开展工作的方法。

四、大型管理模型分析

所谓大型管理模型分析,是指依据各种成熟的、经过实践论证的大型管理模型对问题进行分析的方法。这些管理模型有的是由高校研究机构建立的,也有一部分是由大企业或者管理咨询机构建立的,它们在长时间的企业管理理论研究和实践过程中,将企业经营管理中一些经典的相关关系以一个固定模型的方式描述出来,揭示企业系统内部很多本质性的关系,供企业用来分析自己的经营管理状况,针对企业管理出现的不同问题,能采用最行之有效的模型分析往往可以事半功倍。比较常见的大型管理模型分析包括RCV模型、阿米巴经营、品类管理分析等。

4.1RCV模型

以资源(R)、能力(C)、价值(V)3个方面建立的价值链分析体系。例如要了解某大型制造企业,从供应商采购到物流中心到干线运输以及门店的一系列情况,我们可以通过分析人员数量,设备成本,备选供应商总量,活跃供应商数量,采购量,新品导入量等来了解供应商采购这一环节情况;从交易面积,建筑成本,收货能力,收货量,周转量等来了解物流中心这一环节的情况;从车辆数量和总吨位,用油量,运输能力,运输量等来了解干线运输这一环节的情况;从门店数量,经营面积,房租成本,流量,成交量,销售收入等来了解门店这一环节的情况。

4.2阿米巴经营

将整个公司分割成许多个被称为阿米巴的小型组织,每个小型组织都作为一个独立的利润中心,按照小企业、小商店的方式进行独立经营。这种分割整体逐步细化的思想也适用于数据分析。

4.3品类管理

公司根据产品品类来进行的品牌管理,它包括高效的产品组合、货架管理、定价与促销、补货及新品引进等。例如通过品类管理我们可以分析哪些品类最受消费者喜爱,某品类购买的消费者是哪些人,消费者用什么方式购买,消费者喜欢在哪里购买等等。

五、财务和因子分析

所谓财务和因子分析,主要是指因子分析法在财务信息分析上的广泛应用。因子分析的概念起源于20世纪初的关于智力测试的统计分析,以最少的信息丢失为前提,将众多的原有变量综合成较少的几个综合指标,既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失,达到有效的降维。比较常用的财务和因子分析法有杜邦分析法、EVA分析、财务指标、财务比率、坪效公式、品类公式、流量公式等。

5.1杜邦分析法

利用几种主要的财务比率之间的关系来综合地分析企业的财务状况。具体来说,它是一种用来评价公司赢利能力和股东权益回报水平,从财务角度评价企业绩效的一种经典方法。其基本思想是将企业净资产收益率逐级分解为多项财务比率乘积,这样有助于深入分析比较企业经营业绩。、

5.2财务指标分析

是指总结和评价企业财务状况与经营成果的分析指标,包括偿债能力指标、运营能力指标、盈利能力指标和发展能力指标。对企业财务报表进行分析与评价通常是由报表分析者来完成的。、

5.3财务比率分析

根据同一时期财务报表中两个或多个项目之间的关系,计算其比率,以评价企业的财务状况和经营成果。财务比率可以评价某项投资在各年之间收益的变化,也可以在某一时点比较某一行业的不同企业。财务比率分析可以消除规模的影响,用来比较不同企业的收益与风险,从而帮助投资者和债权人作出理智的决策。

5.4EVA分析法

EVA是经济增加值模型(EconomicValueAdded)的简称,是SternStewart咨询公司开发的一种新型的价值分析工具和业绩评价指标,是基于剩余收益思想发展起来的新型价值模型。EVA分析法具体公式:附加经济价值(EVA)=息前税后利润-资金总成本。

此外常见的还有坪效公式:总毛利(元/月)=平均坪效(元/坪/月)*面积(坪)*毛利率(%);品类公式:总毛利(元/月)=∑单价(元/件)*单价体积(件/坪)*占坪(坪)*周转率(次/月)*毛利率(%);流量公式:总毛利(元/月)=坪流量(次/坪/月)*面积(坪)*转化率(%)*客单价(元/次)*毛利率(%)。

六、专题大数据分析

所谓专题大数据分析,是指对特定的一些规模巨大的数据进行分析。大数据常用来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。常见特征是数据量大、类型繁多、价值密度低、速度快、时效低。比较常见的专题大数据分析有:市场购物篮分析、重力模型、推荐算法、价格敏感度分析、客户分组分析等分析方法。

6.1市场购物篮分析

通过购物篮/购物车所显示的信息来研究顾客的购买行为。购物篮分析最出名的一个案例就是“啤酒与尿布”:20世纪90年代的美国沃尔玛超市中,其管理人员分析销售数据时发现在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,经过调查发现,原来在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒。随后沃尔玛开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布”故事的由来。

6.2重力模型分析

应用最多的一种“出行分布模型”。因表述形态与牛顿重力定律而得名。模型认定两区间内的出行次数同出发区的出行产生数成正比,同两区间的交通阻抗的某一乘方数成正比。

6.3推荐算法

是计算机专业中的一种算法,通过一些数学算法,推测出用户可能喜欢的东西,目前应用推荐算法比较好的地方主要是网络,其中淘宝做的比较好。所谓推荐算法就是利用用户的一些行为,通过一些数学算法,推测出用户可能喜欢的东西。

6.4敏感性分析法

是指从众多不确定性因素中找出对投资项目经济效益指标有重要影响的敏感性因素,并分析、测算其对项目经济效益指标的影响程度和敏感性程度,进而判断项目承受风险能力的一种不确定性分析方法。

6.5客户分组分析

根据用户的属性数据分析,对用户进行了分组归类来分析。它其实就是常规比较分析里面的分组分析,不过主要针对的是客户群体。

 

综上便是针对不同数据分析对象整理的六大类分析方法,且每类里面包含各种小方法。希望对大家有所帮助~

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

数据分析:六大类分析方法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

数据分析:六大类分析方法

本文根据数据分析对象总结了六大类分析方法,每类方法里包含各种小方法,在实际数据分析过程中我们可以灵活运用这些方法来对数据进行高效率的处理。

九大数据分析方法:分层分析法

每种方法都不是万能的,分层分析的缺点,在于:只考虑一个分层指标。虽然简单,但是片面,不能全面说明问题。如果想采用二个指标,可以用矩阵分析法,如果想采用多个指标,可以用DEA模型。
数据分析DEA2024-12-02

九大数据分析方法:相关分析法

即使没有做分析,直观上看这些事件之间也有关系。但是不做分析的话,具体是啥样的关系,很难说清楚。而相关分析,就是找出这种关系的办法。

九大数据分析方法:矩阵分析法

今天继续分享九大数据分析方法系列:矩阵分析法。矩阵分析法是在各路数据分析文章中,出现频率最高的词。甚至有不懂行的小白把它捧到“核心思维”,“底层逻辑”的高度。哈哈,才没有那么神呢。

九大数据分析方法之标签分析法

今天继续介绍九大数据分析方法系列。上一篇我们提到,如果想找两个指标之间相关关系,可以用相关分析法。但很多时候,我们想找的关系,不能用指标来表达。

九大数据分析方法之:周期性分析法

数据分析常用的方法有九种,今天先介绍第一种,操作上最简单的:周期性分析法。它是新人们避免犯小白错误的最好方法。

利用ChatGPT分析数据的六种方法​

想提升您的数据分析技能吗?本文介绍了几个巧妙的方法,可以将ChatGPT用作数据分析工具包中的一款强大工具。

九大数据分析方法:Mece法

MECE是(Mutually Exclusive Collectively Exhaustive)的缩写,指的是“相互独立,完全穷尽”的分类原则。通过MECE方法对问题进行分类,能做到清晰准确,从而容易找到答案。

数据处理与分析的六大 Python 库

本文将介绍六个出色的 Python 库,这些库在不同领域都表现良好。它们对初学者和经验丰富的开发者都很有用。
Python2024-11-29

数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,
2023-07-10

业务数据分析方法之对比分析法

下面介绍几种常见又比较通用的数据分析方法,希望这些分析方法能够成为你进行数据分析和解决业务问题的利器。

六个大数据采集工具架构分析

随着大数据越来越被重视,数据采集的挑战变的尤为突出。今天为大家介绍几款数据采集平台:Apache Flume、Fluentd、Logstash、Chukwa、Scribe、Splunk Forwarder。

数据分析的经典方法之结构分析法

类似的方法,还有矩阵分析法、趋势分析法、漏斗分析法。这些方法的共同点,就是:用一组有逻辑的指标,树立清晰的标杆,长期监控业务变化,从而快速得出结论。

大数据分析,到底分析了啥?

“大数据”仨字已经被喊烂了,“大数据分析”也经常被人提起。可到底咋完全是“大数据分析”?为啥大家喊得很多,平时工作中很少感受得到?今天系统讲解一下。

数据分析经典方法之:周期性分析法

周期分析法,还是更深入分析的基础。比如做预测,如果能拆分出整体数据中周期规律,预测就非常简单!比如做指标异动分析,如果已知有几个因素在影响,每个因素自身周期规律,那么追溯真实原因也很容易。很多同学做得不深入的原因,就是对基础规律了解不够。​

九大数据分析方法:指标拆解法

今天继续跟大家分享:九大数据分析方法系列。

新手必看:数据分析十大方法!

今天给大家分享一篇分析基础方法论的内容,对于感兴趣的分析方法,可以专门深入研究一波。

应对大数据分析的几个方法

在人口红利的时代渐渐褪去,比获得一个新的用户远不如留住老客户的成本。每一款产品,每一项工作服务,都应该核心企业关注的留存,确保做实每一个不同客户。可以理解通过数据分析的情况下保留,通过分析用户的行为或行为组和回访之间的关联,想方设法提高保留

最全数据分析方法

编程学习网:相信大家都或多或少被数据分析搞得头晕眼花,本文将详细地介绍有关数据分析的五种方法,只为让读者更好的了解数据分析
最全数据分析方法
2024-04-23

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录