我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Java实现最小生成树MST的两种解法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Java实现最小生成树MST的两种解法

一、prim算法

时间复杂度较之kruskal较高

通俗的解释就是:

(1)从哪个点开始生成最小生成树都一样,最后的权值都是相同的

(2)从哪个点开始,先标记这个点是访问过的,用visited数组表示所有节点的访问情况

(3)访问节点开始都每个没访问结点的距离选取形成的边的权值最小值

综合以上三点就是我们prim算法写代码实现的重要思路

代码实现:

package Prim;
 
import java.util.Arrays;
 
public class PrimAlgorithm {
    public static void main(String[] args) {
        //测试看看图是否创建ok
        char[] data = new char[]{'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int verxs = data.length;
        //邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
        int[][] weight = new int[][]{
                {10000, 5, 7, 10000, 10000, 10000, 2},
                {5, 10000, 10000, 9, 10000, 10000, 3},
                {7, 10000, 10000, 10000, 8, 10000, 10000},
                {10000, 9, 10000, 10000, 10000, 4, 10000},
                {10000, 10000, 8, 10000, 10000, 5, 4},
                {10000, 10000, 10000, 4, 5, 10000, 6},
                {2, 3, 10000, 10000, 4, 6, 10000},};
        MGraph mGraph = new MGraph(verxs);
        MinTree minTree = new MinTree();
        minTree.createGraph(mGraph, verxs, data, weight);
        minTree.showGraph(mGraph);
        minTree.Prim(mGraph, 0);
    }
}
 
class MinTree {
    
    public void createGraph(MGraph graph, int verxs, char[] data, int[][] weight) {
        int i, j;
        for (i = 0; i < verxs; i++) {
            graph.data[i] = data[i];
            for (j = 0; j < verxs; j++) {
                graph.weight[i][j] = weight[i][j];
            }
        }
    }
 
    // 显示图的邻接矩阵
    public void showGraph(MGraph graph) {
        for (int[] link : graph.weight) {
            System.out.println(Arrays.toString(link));
        }
    }
 
    
    public void Prim(MGraph graph, int v) {
        //定义一个数组,判断节点是不是被访问过了
        int[] visited = new int[graph.verxs];
        //v这个点已经被访问了,从这个点开始访问
        visited[v] = 1;
        //找到节点下标
        int h1 = -1;
        int h2 = -1;
        int minWeight = 10000;//定义初始值为最大值,只要出现小的就会替换
        int sum = 0;
        // 从1开始循环,相当于就是生成graph.verx - 1条边
        for (int k = 1; k < graph.verxs; k++) {
 
            for (int i = 0; i < graph.verxs; i++) {//遍历已经访问过的点
                if (visited[i] == 1){
                    for (int j = 0; j < graph.verxs; j++) {//遍历没有访问过的点
                        //在未访问点中寻找所有与访问过的点相连的边中权值最小值
                        if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
                            minWeight = graph.weight[i][j];
                            h1 = i;
                            h2 = j;
                        }
                    }
                }
            }
            sum += minWeight; // 求最小生成熟的总权值
            //此时已经找到一条边是最小了
            System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
            //然后标记点
            visited[h2] = 1;
            //将权值重新变成最大值
            minWeight = 10000;
        }
        System.out.println("最小生成树的权值是:" + sum);
 
    }
}
 
// 图
class MGraph {
    int verxs; // 表示图节点个数
    char[] data; // 表示节点数据
    int[][] weight; // 表示边
 
    public MGraph(int verxs) {
        this.verxs = verxs;
        data = new char[verxs];
        weight = new int[verxs][verxs];
    }
}

二、kruskal算法

时间复杂度低一些,但是代码量会大一些

对克鲁斯卡尔算法的通俗解释:

(1)对每条边的权值进行排序

(2)按照从小到大依次选取边构成最小生成树,但是要注意是否构成回路,树的概念是不能生成回路

(3)此处用的方法比较巧妙使用了getEnd方法来判断两者终点是不是一样,用ends数组保存最小生成树中每个顶点的终点

代码实现:

package Kruskal;
 
import java.util.Arrays;
 
public class KruskalCase {
 
    private int edgeNum; //边的个数
    private char[] vertexs; //顶点数组
    private int[][] matrix; //邻接矩阵
    //使用 INF 表示两个顶点不能连通
    private static final int INF = Integer.MAX_VALUE;
 
    public static void main(String[] args) {
        char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        //克鲁斯卡尔算法的邻接矩阵
        int matrix[][] = {
                
                 {0, 12, INF, INF, INF, 16, 14},
                 {12, 0, 10, INF, INF, 7, INF},
                 {INF, 10, 0, 3, 5, 6, INF},
                 {INF, INF, 3, 0, 4, INF, INF},
                 {INF, INF, 5, 4, 0, 2, 8},
                 {16, 7, 6, INF, 2, 0, 9},
                 {14, INF, INF, INF, 8, 9, 0}};
        //大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.
 
        //创建KruskalCase 对象实例
        KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
        //输出构建的
        kruskalCase.print();
        kruskalCase.kruskal();
 
    }
 
    //构造器
    public KruskalCase(char[] vertexs, int[][] matrix) {
        //初始化顶点数和边的个数
        int vlen = vertexs.length;
 
        //初始化顶点, 复制拷贝的方式
        this.vertexs = new char[vlen];
        for (int i = 0; i < vertexs.length; i++) {
            this.vertexs[i] = vertexs[i];
        }
 
        //初始化边, 使用的是复制拷贝的方式
        this.matrix = new int[vlen][vlen];
        for (int i = 0; i < vlen; i++) {
            for (int j = 0; j < vlen; j++) {
                this.matrix[i][j] = matrix[i][j];
            }
        }
        //统计边的条数
        for (int i = 0; i < vlen; i++) {
            for (int j = i + 1; j < vlen; j++) {
                if (this.matrix[i][j] != INF) {
                    edgeNum++;
                }
            }
        }
 
    }
 
    public void kruskal() {
        int index = 0; //表示最后结果数组的索引
        int[] ends = new int[edgeNum]; //用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点
        //创建结果数组, 保存最后的最小生成树
        EData[] rets = new EData[edgeNum];
 
        //获取图中 所有的边的集合 , 一共有12边
        EData[] edges = getEdges();
        System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共" + edges.length); //12
 
        //按照边的权值大小进行排序(从小到大)
        sortEdges(edges);
 
        //遍历edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets, 否则不能加入
        for (int i = 0; i < edgeNum; i++) {
            //获取到第i条边的第一个顶点(起点)
            int p1 = getPosition(edges[i].start); //p1=4
            //获取到第i条边的第2个顶点
            int p2 = getPosition(edges[i].end); //p2 = 5
 
            //获取p1这个顶点在已有最小生成树中的终点
            int m = getEnd(ends, p1); //m = 4
            //获取p2这个顶点在已有最小生成树中的终点
            int n = getEnd(ends, p2); // n = 5
            //是否构成回路
            if (m != n) { //没有构成回路
                ends[m] = n; // 设置m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]
                rets[index++] = edges[i]; //有一条边加入到rets数组
            }
        }
        //<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
        //统计并打印 "最小生成树", 输出  rets
        System.out.println("最小生成树为");
        for (int i = 0; i < index; i++) {
            System.out.println(rets[i]);
        }
 
 
    }
 
    //打印邻接矩阵
    public void print() {
        System.out.println("邻接矩阵为: \n");
        for (int i = 0; i < vertexs.length; i++) {
            for (int j = 0; j < vertexs.length; j++) {
                System.out.printf("%12d", matrix[i][j]);
            }
            System.out.println();//换行
        }
    }
 
    
    private void sortEdges(EData[] edges) {
        for (int i = 0; i < edges.length - 1; i++) {
            for (int j = 0; j < edges.length - 1 - i; j++) {
                if (edges[j].weight > edges[j + 1].weight) {//交换
                    EData tmp = edges[j];
                    edges[j] = edges[j + 1];
                    edges[j + 1] = tmp;
                }
            }
        }
    }
 
    
    private int getPosition(char ch) {
        for (int i = 0; i < vertexs.length; i++) {
            if (vertexs[i] == ch) {//找到
                return i;
            }
        }
        //找不到,返回-1
        return -1;
    }
 
    
    private EData[] getEdges() {
        int index = 0;
        EData[] edges = new EData[edgeNum];
        for (int i = 0; i < vertexs.length; i++) {
            for (int j = i + 1; j < vertexs.length; j++) {
                if (matrix[i][j] != INF) {
                    edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
                }
            }
        }
        return edges;
    }
 
    
    private int getEnd(int[] ends, int i) { // i = 4 [0,0,0,0,5,0,0,0,0,0,0,0]
        while (ends[i] != 0) {
            i = ends[i];
        }
        return i;
    }
 
}
 
//创建一个类EData ,它的对象实例就表示一条边
class EData {
    char start; //边的一个点
    char end; //边的另外一个点
    int weight; //边的权值
 
    //构造器
    public EData(char start, char end, int weight) {
        this.start = start;
        this.end = end;
        this.weight = weight;
    }
 
    //重写toString, 便于输出边信息
    @Override
    public String toString() {
        return "EData [<" + start + ", " + end + ">= " + weight + "]";
    }
 
 
}

到此这篇关于Java实现最小生成树MST的两种解法的文章就介绍到这了,更多相关Java最小生成树内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Java实现最小生成树MST的两种解法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

浅谈算法之最小生成树Kruskal的Python实现

目录一、前言二、树是什么三、从图到树四、解决生成问题五、从生成树到最小生成树六、实际问题与代码实现七、结尾一、前言 我们先不讲算法的原理,也不讲一些七七八八的概念,因为对于初学者来说,看到这些术语和概念往往会很头疼。头疼也是正常的,因为无端
2022-06-02

Python实现两种稀疏矩阵的最小二乘法

这篇文章主要为大家详细介绍了Python实现的两种稀疏矩阵最小二乘法lsqr和lsmr,前者是经典算法,后者来自斯坦福优化实验室,据称可以比lsqr更快收敛,感兴趣的可以了解一下
2023-02-26

详解Java递归实现树形结构的两种方式

在开发的过程中,很多业务场景需要一个树形结构的结果集进行前端展示,也可以理解为是一个无限父子结构,常见的有报表指标结构、菜单结构等,这篇文章主要介绍了Java递归实现树形结构的两种方式,需要的朋友可以参考下
2022-11-13

Python如何实现两种稀疏矩阵的最小二乘法

今天小编给大家分享一下Python如何实现两种稀疏矩阵的最小二乘法的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。最小二乘法s
2023-07-05

JAVA递归生成树形菜单的实现方法是什么

今天小编给大家分享一下JAVA递归生成树形菜单的实现方法是什么的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。  递归生成一个
2023-06-26

基于Java数组实现循环队列的两种方法小结

用java实现循环队列的方法:1、添加一个属性size用来记录眼下的元素个数。目的是当head=rear的时候。通过size=0还是size=数组长度。来区分队列为空,或者队列已满。2、数组中仅仅存储数组大小-1个元素,保证rear转一圈之
2023-05-30

Java实现学生成绩输出到磁盘文件的方法详解

这篇文章主要为大家详细介绍了如何利用Java实现将学生成绩输出到磁盘文件的功能,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
2022-11-13

Java编程实现生成给定范围内不重复随机数的方法小结

本文实例总结了Java编程实现生成给定范围内不重复随机数的方法。分享给大家供大家参考,具体如下:在Java中的Math类中存在一个random()方法,该方法默认生成0.0到1.0之间的double型随机数;经过稍微处理,就可以产生我们需要
2023-05-31

详解JAVA生成将图片存入数据库的sql语句实现方法

详解JAVA生成将图片存入数据库的sql语句实现方法实现代码:注释很清楚,不在重述~public class Image2Hex { public static void main(String[] args) { try{
2023-05-31

Java编程实现从给定范围内随机N个不重复数生成随机数的方法小结

本文实例讲述了Java编程实现从给定范围内随机N个不重复数生成随机数的方法。分享给大家供大家参考,具体如下:一、JAVA中生成随机数的方式1、在j2se中使用Math.random()令系统随机选取一个0~1之间的double类型小数,将其
2023-05-31

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录