我的编程空间,编程开发者的网络收藏夹
学习永远不晚

如何利用Python实现数据导入和可视化

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

如何利用Python实现数据导入和可视化

这篇文章将为大家详细讲解有关如何利用Python实现数据导入和可视化,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

数据导入和可视化

通常,数据分析的第一步由获取数据和导入数据到我们的工作环境组成。我们可以使用以下的Python代码简单的下载数据:

Python

import urllib2

url = 'http://aima.cs.berkeley.edu/data/iris.csv'

u = urllib2.urlopen(url)

localFile = open('iris.csv'', 'w')

localFile.write(u.read())

localFile.close()

在以上的代码片段中,我们使用了urllib2类库以获取伯克利大学网站的一个文件,并使用标准类库提供的File对象把它保存到本地磁盘。数据包含鸢尾花(iris)数据集,这是一个包含了三种鸢尾花(山鸢尾、维吉尼亚鸢尾和变色鸢尾)的各50个数据样本的多元数据集,每个样本都有四个特征(或者说变量),即花萼(sepal)和花瓣(petal)的长度和宽度。以厘米为单位。

数据集以CSV(逗号分割值)的格式存储。CSV文件可以很方便的转化并把其中的信息存储为适合的数据结构。此数据集有5列(译者注:原文是行,但这里应该是列的意思),前4列包含着特征值,最后一列代表着样本类型。CSV文件很容易被numpy类库的genfromtxt方法解析:

Python

from numpy import genfromtxt, zeros

# read the first 4 columns

data = genfromtxt('iris.csv',delimiter=',',usecols=(0,1,2,3))

# read the fifth column

target = genfromtxt('iris.csv',delimiter=',',usecols=(4),dtype=str)

在上面的例子中我们创建了一个包含特征值的矩阵以及一个包含样本类型的向量。我们可以通过查看我们加载的数据结构的shape值来确认数据集的大小:

Python

print data.shape

(150, 4)

print target.shape

(150,)

我们也可以查看我们有多少种样本类型以及它们的名字:

Python

print set(target) # build a collection of unique elements

set(['setosa', 'versicolor', 'virginica'])

当我们处理新数据的时候,一项很重要的任务是尝试去理解数据包含的信息以及它的组织结构。可视化可以灵活生动的展示数据,帮助我们深入理解数据。

使用pylab类库(matplotlib的接口)的plotting方法可以建一个二维散点图让我们在两个维度上分析数据集的两个特征值:

Python

from pylab import plot, show

plot(data[target=='setosa',0],data[target=='setosa',2],'bo')

plot(data[target=='versicolor',0],data[target=='versicolor',2],'ro')

plot(data[target=='virginica',0],data[target=='virginica',2],'go')

show()

上面那段代码使用第一和第三维度(花萼的长和宽),结果如下图所示: 如何利用Python实现数据导入和可视化

在上图中有150个点,不同的颜色代表不同的类型;蓝色点代表山鸢尾,红色点代表变色鸢尾,绿色点代表维吉尼亚鸢尾。

另一种常用的查看数据的方法是分特性绘制直方图。在本例中,既然数据被分为三类,我们就可以比较每一类的分布特征。下面这个代码可以绘制数据中每一类型的第一个特性(花萼的长度):

Python

from pylab import figure, subplot, hist, xlim, show

xmin = min(data[:,0])

xmax = max(data[:,0])

figure()

subplot(411) # distribution of the setosa class (1st, on the top)

hist(data[target=='setosa',0],color='b',alpha=.7)

xlim(xmin,xmax)

subplot(412) # distribution of the versicolor class (2nd)

hist(data[target=='versicolor',0],color='r',alpha=.7)

xlim(xmin,xmax)

subplot(413) # distribution of the virginica class (3rd)

hist(data[target=='virginica',0],color='g',alpha=.7)

xlim(xmin,xmax)

subplot(414) # global histogram (4th, on the bottom)

hist(data[:,0],color='y',alpha=.7)

xlim(xmin,xmax)

show()

结果如下图:

如何利用Python实现数据导入和可视化

根据上图的直方图,我们可以根据数据类型区分理解数据的特征。

关于“如何利用Python实现数据导入和可视化”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

如何利用Python实现数据导入和可视化

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何利用Python实现数据导入和可视化

这篇文章将为大家详细讲解有关如何利用Python实现数据导入和可视化,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。数据导入和可视化通常,数据分析的第一步由获取数据和导入数据到我们的工作环境组成。我们可以使
2023-06-03

如何利用 PHP 函数实现数据可视化?

利用 php 函数可实现数据可视化,步骤包括:创建数据源(数据存储在数组、数据库或文件中)根据数据性质选择图表类型(如条形图、折线图、饼图)使用 chart.js 库(javascript 库,提供多种图表类型)使用 php 函数配置图表(
如何利用 PHP 函数实现数据可视化?
2024-05-02

Python中如何实现数据可视化

今天就跟大家聊聊有关Python中如何实现数据可视化,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。热力图热力图(Heat Map)是数据的一种矩阵表示方法,其中每个矩阵元素的值通过一
2023-06-16

Python中怎么利用seaborn实现数据可视化

本篇文章为大家展示了Python中怎么利用seaborn实现数据可视化,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。本文目标图表是这样:2个系列。每个系列找出最小最大的柱子,标记成不同的颜色本文所需
2023-06-16

如何利用php接口和ECharts实现数据可视化统计图

如何利用PHP接口和ECharts实现数据可视化统计图简介在网页应用程序中,数据可视化统计图对于展示和分析大量数据非常重要。本篇文章将介绍如何利用PHP接口和ECharts库来实现数据可视化统计图,并为读者提供具体的代码示例。前提条件在开始
如何利用php接口和ECharts实现数据可视化统计图
2023-12-17

pyecharts如何实现数据可视化

这篇文章将为大家详细讲解有关pyecharts如何实现数据可视化,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1.概述pyecharts 是百度开源的,适用于数据可视化的工具,配置灵活,展示图表相对美观,
2023-06-29

怎么用Python echarts实现数据可视化

本篇内容主要讲解“怎么用Python echarts实现数据可视化”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么用Python echarts实现数据可视化”吧!1.概述pyecharts
2023-06-29

python如何使用PCA可视化数据

本篇内容主要讲解“python如何使用PCA可视化数据”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python如何使用PCA可视化数据”吧!什么是PCA我们先复习一下这个理论。如果你想确切了解
2023-06-19

如何实现Python底层技术的数据可视化

在当今人工智能和大数据时代,数据可视化成为了数据分析应用中的一个非常重要的环节。数据可视化能够帮助我们更加直观地理解数据,发现数据中的规律和异常,同时也能够帮助我们更加清晰地向他人传递自己的数据分析。Python 是当前被广泛使用的编程语言
如何实现Python底层技术的数据可视化
2023-11-08

如何使用Python实现股票数据分析的可视化

这篇文章主要为大家展示了“如何使用Python实现股票数据分析的可视化”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“如何使用Python实现股票数据分析的可视化”这篇文章吧。一、简介我们知道在购
2023-06-22

mysql如何利用Navicat 导出和导入数据库

MySql是我们经常用到的数据,无论是开发人员用来练习,还是小型私服游戏服务器,或者是个人软件使用,都十分方便。对于做一些个人辅助软件,选择mysql数据库是个明智的选择,有一个好的工具更是事半功倍,对于MySql 的IDE 我推荐Navicat for My
mysql如何利用Navicat 导出和导入数据库
2016-01-21

python中如何实现数据导入

小编给大家分享一下python中如何实现数据导入,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!说明1、将数据导入模块作为单独的函数。2、若不愿使用数据导入函数,则
2023-06-20

如何使用Oracle实现数据导入和导出

要使用Oracle实现数据导入和导出,可以使用以下方法:数据导入:使用Oracle SQL Developer工具:可以通过Oracle SQL Developer工具来导入数据。在SQL Developer中,选择要导入数据的表,然后使
如何使用Oracle实现数据导入和导出
2024-03-02

如何使用Python进行数据可视化

这篇“如何使用Python进行数据可视化”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“如何使用Python进行数据可视化”文
2023-07-05

Python数据可视化之Pyecharts如何使用

这篇“Python数据可视化之Pyecharts如何使用”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python数据可视化
2023-07-06

python如何实现股票历史数据可视化示例

这篇文章主要介绍python如何实现股票历史数据可视化示例,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!投资有风险,选择需谨慎。 股票交易数据分析可直观股市走向,对于如何把握股票行情,快速解读股票交易数据有不可替代的
2023-06-15

python数据可视化pygal模拟掷骰子如何实现

这篇文章主要介绍“python数据可视化pygal模拟掷骰子如何实现”,在日常操作中,相信很多人在python数据可视化pygal模拟掷骰子如何实现问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”python数
2023-07-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录