我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python之ThreadPoolExecutor线程池问题

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python之ThreadPoolExecutor线程池问题

概念

Python中已经有了threading模块,为什么还需要线程池呢,线程池又是什么东西呢?

以爬虫为例,需要控制同时爬取的线程数,例子中创建了20个线程,而同时只允许3个线程在运行,但是20个线程都需要创建和销毁,线程的创建是需要消耗系统资源的,有没有更好的方案呢?

其实只需要三个线程就行了,每个线程各分配一个任务,剩下的任务排队等待,当某个线程完成了任务的时候,排队任务就可以安排给这个线程继续执行。

这就是线程池的思想(当然没这么简单),但是自己编写线程池很难写的比较完美,还需要考虑复杂情况下的线程同步,很容易发生死锁。

Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutorProcessPoolExecutor两个类,实现了对threadingmultiprocessing的进一步抽象(这里主要关注线程池),不仅可以帮我们自动调度线程,还可以做到:

  • 主线程可以获取某一个线程(或者任务的)的状态,以及返回值。
  • 当一个线程完成的时候,主线程能够立即知道。
  • 让多线程和多进程的编码接口一致。

实例

简单使用

from concurrent.futures import ThreadPoolExecutor
import time
 
# 参数times用来模拟网络请求的时间
def get_html(times):
    time.sleep(times)
    print("get page {}s finished".format(times))
    return times
 
executor = ThreadPoolExecutor(max_workers=2)
# 通过submit函数提交执行的函数到线程池中,submit函数立即返回,不阻塞
task1 = executor.submit(get_html, (3))
task2 = executor.submit(get_html, (2))
# done方法用于判定某个任务是否完成
print(task1.done())
# cancel方法用于取消某个任务,该任务没有放入线程池中才能取消成功
print(task2.cancel())
time.sleep(4)
print(task1.done())
# result方法可以获取task的执行结果
print(task1.result())
 
# 执行结果
# False  # 表明task1未执行完成
# False  # 表明task2取消失败,因为已经放入了线程池中
# get page 2s finished
# get page 3s finished
# True  # 由于在get page 3s finished之后才打印,所以此时task1必然完成了
# 3     # 得到task1的任务返回值

ThreadPoolExecutor构造实例的时候,传入max_workers参数来设置线程池中最多能同时运行的线程数目。

使用submit函数来提交线程需要执行的任务(函数名和参数)到线程池中,并返回该任务的句柄(类似于文件、画图),注意submit()不是阻塞的,而是立即返回。

通过submit函数返回的任务句柄,能够使用done()方法判断该任务是否结束。上面的例子可以看出,由于任务有2s的延时,在task1提交后立刻判断,task1还未完成,而在延时4s之后判断,task1就完成了。

使用cancel()方法可以取消提交的任务,如果任务已经在线程池中运行了,就取消不了。这个例子中,线程池的大小设置为2,任务已经在运行了,所以取消失败。如果改变线程池的大小为1,那么先提交的是task1,task2还在排队等候,这是时候就可以成功取消。

使用result()方法可以获取任务的返回值。查看内部代码,发现这个方法是阻塞的。

as_completed

上面虽然提供了判断任务是否结束的方法,但是不能在主线程中一直判断啊。

有时候我们是得知某个任务结束了,就去获取结果,而不是一直判断每个任务有没有结束。

这是就可以使用as_completed方法一次取出所有任务的结果。

from concurrent.futures import ThreadPoolExecutor, as_completed
import time
 
# 参数times用来模拟网络请求的时间
def get_html(times):
    time.sleep(times)
    print("get page {}s finished".format(times))
    return times
 
executor = ThreadPoolExecutor(max_workers=2)
urls = [3, 2, 4] # 并不是真的url
all_task = [executor.submit(get_html, (url)) for url in urls]
 
for future in as_completed(all_task):
    data = future.result()
    print("in main: get page {}s success".format(data))
 
# 执行结果
# get page 2s finished
# in main: get page 2s success
# get page 3s finished
# in main: get page 3s success
# get page 4s finished
# in main: get page 4s success

as_completed()方法是一个生成器,在没有任务完成的时候,会阻塞,在有某个任务完成的时候,会yield这个任务,就能执行for循环下面的语句,然后继续阻塞住,循环到所有的任务结束。

从结果也可以看出,先完成的任务会先通知主线程

map

除了上面的as_completed方法,还可以使用executor.map方法,但是有一点不同。

from concurrent.futures import ThreadPoolExecutor
import time
 
# 参数times用来模拟网络请求的时间
def get_html(times):
    time.sleep(times)
    print("get page {}s finished".format(times))
    return times
 
executor = ThreadPoolExecutor(max_workers=2)
urls = [3, 2, 4] # 并不是真的url
 
for data in executor.map(get_html, urls):
    print("in main: get page {}s success".format(data))
# 执行结果
# get page 2s finished
# get page 3s finished
# in main: get page 3s success
# in main: get page 2s success
# get page 4s finished
# in main: get page 4s success

使用map方法,无需提前使用submit方法,map方法与python标准库中的map含义相同,都是将序列中的每个元素都执行同一个函数。

上面的代码就是对urls的每个元素都执行get_html函数,并分配各线程池。可以看到执行结果与上面的as_completed方法的结果不同,输出顺序和urls列表的顺序相同,就算2s的任务先执行完成,也会先打印出3s的任务先完成,再打印2s的任务完成。

wait

wait方法可以让主线程阻塞,直到满足设定的要求。

from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETED
import time
 
# 参数times用来模拟网络请求的时间
def get_html(times):
    time.sleep(times)
    print("get page {}s finished".format(times))
    return times
 
executor = ThreadPoolExecutor(max_workers=2)
urls = [3, 2, 4] # 并不是真的url
all_task = [executor.submit(get_html, (url)) for url in urls]
wait(all_task, return_when=ALL_COMPLETED)
print("main")
# 执行结果 
# get page 2s finished
# get page 3s finished
# get page 4s finished
# main

wait方法接收3个参数,等待的任务序列、超时时间以及等待条件。

等待条件return_when默认为ALL_COMPLETED,表明要等待所有的任务都结束。

可以看到运行结果中,确实是所有任务都完成了,主线程才打印出main

等待条件还可以设置为FIRST_COMPLETED,表示第一个任务完成就停止等待。

源码分析

cocurrent.future模块中的future的意思是未来对象,可以把它理解为一个在未来完成的操作,这是异步编程的基础 。

在线程池submit()之后,返回的就是这个future对象,返回的时候任务并没有完成,但会在将来完成。

也可以称之为task的返回容器,这个里面会存储task的结果和状态。

ThreadPoolExecutor内部是如何操作这个对象的呢?

下面简单介绍ThreadPoolExecutor的部分代码:

1.init方法

init方法中主要重要的就是任务队列和线程集合,在其他方法中需要使用到。

2.submit方法

submit中有两个重要的对象,_base.Future()_WorkItem()对象,_WorkItem()对象负责运行任务和对future对象进行设置,最后会将future对象返回,可以看到整个过程是立即返回的,没有阻塞。

3.adjust_thread_count方法

这个方法的含义很好理解,主要是创建指定的线程数。但是实现上有点难以理解,比如线程执行函数中的weakref.ref,涉及到了弱引用等概念,留待以后理解。

4._WorkItem对象

_WorkItem对象的职责就是执行任务和设置结果。这里面主要复杂的还是self.future.set_result(result)

5.线程执行函数--_worker

这是线程池创建线程时指定的函数入口,主要是从队列中依次取出task执行,但是函数的第一个参数还不是很明白。留待以后。

总结

future的设计理念很棒,在线程池/进程池和携程中都存在future对象,是异步编程的核心。

ThreadPoolExecutor 让线程的使用更加方便,减小了线程创建/销毁的资源损耗,无需考虑线程间的复杂同步,方便主线程与子线程的交互。

线程池的抽象程度很高,多线程和多进程的编码接口一致。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python之ThreadPoolExecutor线程池问题

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python之ThreadPoolExecutor线程池问题

这篇文章主要介绍了Python之ThreadPoolExecutor线程池问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-03-14

Python之ThreadPoolExecutor线程池问题怎么解决

本文小编为大家详细介绍“Python之ThreadPoolExecutor线程池问题怎么解决”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python之ThreadPoolExecutor线程池问题怎么解决”文章能帮助大家解决疑惑,下面跟
2023-07-05

python中ThreadPoolExecutor线程池和ProcessPoolExecutor进程池怎么使用

这篇文章主要介绍了python中ThreadPoolExecutor线程池和ProcessPoolExecutor进程池怎么使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇python中ThreadPoolE
2023-07-02

简单谈谈ThreadPoolExecutor线程池之submit方法

jdk1.7.0_79 在上一篇《ThreadPoolExecutor线程池原理及其execute方法》中提到了线程池ThreadPoolExecutor的原理以及它的execute方法。本文解析ThreadPoolExecutor#sub
2023-05-31

java线程池ThreadPoolExecutor类怎么用

这篇文章将为大家详细讲解有关java线程池ThreadPoolExecutor类怎么用,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。在《阿里巴巴java开发手册》中指出了线程资源必须通过线程池提供,不允许
2023-06-29

Java线程池ThreadPoolExecutor怎么创建

本篇内容介绍了“Java线程池ThreadPoolExecutor怎么创建”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!简介ThreadPo
2023-07-02

怎么理解ThreadPoolExecutor线程池技术

本篇文章为大家展示了怎么理解ThreadPoolExecutor线程池技术,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。Java是一门多线程的语言,基本上生产环境的Java项目都离不开多线程。而线程
2023-06-19

Python并发编程之线程池/进程池

原文来自开源中国前言python标准库提供线程和多处理模块来编写相应的多线程/多进程代码,但当项目达到一定规模时,频繁地创建/销毁进程或线程是非常消耗资源的,此时我们必须编写自己的线程池/进程池来交换时间空间。但是从Python3.2开始,
2023-06-02

ThreadPoolExecutor线程池原理及其execute方法(详解)

jdk1.7.0_79 对于线程池大部分人可能会用,也知道为什么用。无非就是任务需要异步执行,再者就是线程需要统一管理起来。对于从线程池中获取线程,大部分人可能只知道,我现在需要一个线程来执行一个任务,那我就把任务丢到线程池里,线程池里有空
2023-05-31

Java多线程 - 创建线程池的方法 - ThreadPoolExecutor和Executors

文章目录 线程池(重点)线程池介绍实现线程池的方式方式一: 实现类ThreadPoolExecutorThreadPoolExecutor构造器的参数线程池处理Runnable任务线程池处理Callable任务 方式二:
2023-08-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录