我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python人工智能常用库Numpy使用入门

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python人工智能常用库Numpy使用入门

  第一章 jupyter notebook简单教程

  命令模式按键esc开启

  Enter : 转入编辑模式

  Shift-Enter : 运行本单元,选中下个单元

  Ctrl-Enter : 运行本单元

  Alt-Enter : 运行本单元,在其下插入新单元

  Y : 单元转入代码状态

  M :单元转入markdown状态

  Z : 恢复删除的最后一个单元

  第二章 numpy简单教程

  2.1 数组

  import numpy as np

  a = np.array([1, 2, 3])

  print(a)

  #out

  [1 2 3]

  a

  #out

  array([1, 2, 3])

  type(a)

  #out

  numpy.ndarray

  a.shape

  #out

  (3,)

  # reshape(1, -1)中1代表设置数组为1行 , -1代表一个占位符 , 表示a数组列数

  # reshape()中-1可以作为行的占位符也可以作为列的占位符

  a = a.reshape(1, -1)

  a.shape

  #out

  (1, 3)

  a = np.array([1, 2, 3, 4, 5, 6])

  a.shape

  #out

  (6,)

  a = a.reshape(2,-1)

  a.shape

  #out

  (2, 3)

  a

  #out

  array([[1, 2, 3],

  [4, 5, 6]])

  a = a.reshape(-1, 2)

  a.shape

  #out

  (3, 2)

  a[2, 0]

  #out

  5

  a[2, 0] = 55

  a[2, 0]

  #out

  55

  # zeros用于创建元素全部为0的矩阵数组

  a = np.zeros((3, 3))

  a

  #out

  array([[0., 0., 0.],

  [0., 0., 0.],

  [0., 0., 0.]])

  # ones用于创建元素全部为1的矩阵数组

  a = np.ones((3, 3))

  a

  #out

  array([[1., 1., 1.],

  [1., 1., 1.],

  [1., 1., 1.]])

  # zeros ones函数也完全可以用full函数实现

  a = np.full((2, 3), 0)

  a

  #out

  array([[0, 0, 0],

  [0, 0, 0]])

  # eye函数用于创建单位矩阵

  a = np.eye(3)

  a

  #out

  array([[1., 0., 0.],

  [0., 1., 0.],

  [0., 0., 1.]])

  # random.random用户创建数值为0-1之间的随机二维数组

  a = np.random.random((2, 3))

  a

  #out

  array([[0.54627035, 0.49586489, 0.6976645 ],

  [0.76596824, 0.95951819, 0.7515421 ]])

  2.2 数组索引操作

  # indexing : 数组索引

  a = np.array([[1, 2, 3, 4],

  [5, 6, 7, 8],

  [9, 10, 11, 12]])

  # -2代表数组的倒数第二行 , 1:3代表从第一列开始往后两个元素

  a[-2:, 1:3]

  #out

  array([[ 6, 7],

  [10, 11]])

  # 取倒数第二行 , 第三列元素

  a[-2, 3]

  #out

  8

  a

  #out

  array([[ 1, 2, 3, 4],

  [ 5, 6, 7, 8],

  [ 9, 10, 11, 12]])

  a.shape

  #out

  (3, 4)

  # 将数组a倒数第二行开始到最后一行 , 从第一列往后两列元素赋值给b数组

  b = a[-2:, 1:3]

  a

  #out

  array([[ 1, 2, 3, 4],

  [ 5, 6, 7, 8],

  [ 9, 10, 11, 12]])

  b

  #out

  array([[ 6, 7],

  [10, 11]])

  b.shape

  #out

  (2, 2)

  # 指定为索引为的2行

  b = a[2, 1:3]

  b

  #out

  array([10, 11])

  b.shape

  #out

  (2,)

  b = a[1, 2]

  b

  #out

  7

  b.shape

  #out

  ()

  b = a[2:3, 1:3]

  b

  #out

  array([[10, 11]])

  b.shape

  #out

  (1, 2)

  # 将数组的3行的1列 + 10

  a[np.arange(3), 1] += 10

  a

  #out

  array([[ 1, 12, 3, 4],

  [ 5, 16, 7, 8],

  [ 9, 20, 11, 12]])

  a[np.arange(2), 3] += 100

  a

  #out

  array([[ 1, 12, 3, 104],

  [ 5, 16, 7, 108],

  [ 9, 20, 11, 12]])

  # 产生一个0,1,2的数组 , 不包含3

  np.arange(3)

  #out

  array([0, 1, 2])

  # 产生一个从3-7的数组 , 不包含7

  np.arange(3,7)

  #out

  array([3, 4, 5, 6])

  a[np.arange(3), [1,1,1]] += 10

  a

  #out

  array([[ 1, 22, 3, 104],

  [ 5, 26, 7, 108],

  [ 9, 30, 11, 12]])

  a[[0,1,2], [1,1,1]] += 10

  a

  #out

  array([[ 1, 32, 3, 104],

  [ 5, 36, 7, 108],

  [ 9, 40, 11, 12]])

  # 判断数组a中大于10的值

  result_index = a>10

  result_index

  #out

  array([[False, True, False, True],

  [False, True, False, True],

  [False, True, True, True]])

  a[result_index]

  #out

  array([ 32, 104, 36, 108, 40, 11, 12])

  a[a>10]

  #out

  array([ 32, 104, 36, 108, 40, 11, 12])

  2.3 元素数组类型

  a = np.array([1,2,3])

  a.dtype

  #out

  dtype('int64')

  a = np.array([1.1, 2.2])

  a.dtype

  #out

  dtype('float64')

  a = np.array([1.1, 1, 'a'])

  a

  #out

  array(['1.1', '1', 'a'], dtype='

  # 将float型数组转化成int型

  a = np.array([1.1, 2.2], dtype=np.int64)

  a

  #out

  array([1, 2])

  # 将a数组赋值给b数组 , 同时设置元素类型为int

  b = np.array(a, dtype=np.int64)

  b

  #out

  array([1, 2])

  2.3 数组运算与常用函数

  numpy中的数学运算

  a = np.array([[1,2],

  [3,4]])

  b = np.array([[5,6],

  [6,5]])

  # 加法

  a+b

  #out

  array([[6, 8],

  [9, 9]])

  np.add(a,b)

  #out

  array([[6, 8],

  [9, 9]])

  # 减法

  a-b

  #out

  array([[-4, -4],

  [-3, -1]])

  np.subtract(a,b)

  #out

  array([[-4, -4],

  [-3, -1]])

  # 乘法

  a*b

  #out

  array([[ 5, 12],

  [18, 20]])

  np.multiply(a,b)

  #out

  array([[ 5, 12],

  [18, 20]])

  # 除法

  a/b

  #out

  array([[0.2 , 0.33333333],

  [0.5 , 0.8 ]])

  np.divide(a,b)

  #out

  array([[0.2 , 0.33333333],

  [0.5 , 0.8 ]])

  # 开方

  np.sqrt(a)

  #out

  array([[1. , 1.41421356],

  [1.73205081, 2. ]])

  a

  #out

  array([[1, 2],

  [3, 4]])

  b = np.array([[1,2,3],

  [4,5,6]])无锡人流医院哪家好 http://www.wxbhnkyy120.com/

  # dot : 是将a数组与b数组矩阵相乘的结果

  a.dot(b)

  #out

  array([[ 9, 12, 15],

  [19, 26, 33]])

  np.dot(a,b)

  #out

  array([[ 9, 12, 15],

  [19, 26, 33]])

  numpy中的常用函数

  # sum : 求和函数

  # 计算数组中全部元素的和

  a = np.array([[1,2],

  [3,4]])

  np.sum(a)

  #out

  10

  # 将数组中的每一列进行求和操作

  np.sum(a, axis=0)

  #out

  array([4, 6])

  # 将数组中的每一行进行求和操作

  np.sum(a, axis=1)

  #out

  array([3, 7])

  # mean : 求平均值函数

  # 计算数组的平均值

  np.mean(a)

  #out

  2.5

  # 计算数组每一列的平均值

  np.mean(a, axis=0)

  #out

  array([2., 3.])

  # 计算数组每一行的平均值

  np.mean(a, axis=1)

  #out

  array([1.5, 3.5])

  # uniform : 用户生成一个指定范围内的随机数值

  np.random.uniform(3,4)

  #out

  3.247709331922638

  # tile : 用于将一个数组作为一个元素重复指定的次数

  a

  #out

  array([[1, 2],

  [3, 4]])

  # 将数组在行上重复1次, 在列上重复2次

  np.tile(a, (1,2))

  #out

  array([[1, 2, 1, 2],

  [3, 4, 3, 4]])

  # 将数组在行上重复1次, 在列上重复3次

  np.tile(a, (1,3))

  #out

  array([[1, 2, 1, 2, 1, 2],

  [3, 4, 3, 4, 3, 4]])

  # argsort : 将数组中的元素进行排序 , 默认从小到大

  a = np.array([[1,12,3,104],

  [5,10,1,3]])

  # 按照数组下标将元素排好

  np.argsort(a)

  #out

  array([[0, 2, 1, 3],

  [2, 3, 0, 1]])

  # 将每一列进行排序

  a.argsort(axis=0)

  #out

  array([[0, 1, 1, 1],

  [1, 0, 0, 0]])

  # T : 矩阵转置

  a

  #out

  array([[ 1, 12, 3, 104],

  [ 5, 10, 1, 3]])

  a.T

  #out

  array([[ 1, 5],

  [ 12, 10],

  [ 3, 1],

  [104, 3]])

  # 使用transpose函数将数组转置

  np.transpose(a)

  #out

  array([[ 1, 5],

  [ 12, 10],

  [ 3, 1],

  [104, 3]])

  2.4 广播

  广播

  可以将不同维度的数组进行相加 , numpy会将不同维度的数组转化成相同维度的数组 , 广播会在缺失维度和一维的数组上进行操作

  a = np.array([[1, 2, 3],

  [5, 6, 7],

  [9, 10, 11]])

  b = np.array([1,2,3])

  # 将b数组加到a数组的每一行

  for i in range(3):

  a[i, :] += b

  a

  #out

  array([[ 2, 4, 6],

  [ 6, 8, 10],

  [10, 12, 14]])

  # 将b数组行上重复3次 , 列上重复1次 , 与a相加

  a + np.tile(b, (3,1))

  #out

  array([[ 3, 6, 9],

  [ 7, 10, 13],

  [11, 14, 17]])

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python人工智能常用库Numpy使用入门

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python人工智能常用库Numpy使用入门

  第一章 jupyter notebook简单教程  命令模式按键esc开启  Enter : 转入编辑模式  Shift-Enter : 运行本单元,选中下个单元  Ctrl-Enter : 运行本单元  Alt-Enter : 运行本
2023-06-02

快速入门:Python人工智能库一览

快速入门: Python人工智能库一览,需要具体代码示例引言:随着人工智能技术的快速发展,应用于机器学习和深度学习的Python人工智能库也越来越多。这些库提供了各种强大的工具和算法,使得开发者们能够更加轻松地构建和训练自己的人工智能模型。
快速入门:Python人工智能库一览
2023-12-23

人工智能使用python的原因

这篇文章主要介绍人工智能使用python的原因,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!python主要应用领域有哪些1、云计算,典型应用OpenStack。2、WEB前端开发,众多大型网站均为Python开发。
2023-06-14

Python人工智能框架怎么使用

Python有许多流行的人工智能框架,如TensorFlow, PyTorch, Keras等。下面是一个使用TensorFlow和Keras的示例:1. 首先,安装所需的库。在命令行中运行以下命令:pip install tensorfl
2023-10-21

怎么用python做人工智能

使用Python构建人工智能系统可以采用以下步骤:1. 掌握基本的Python编程知识和语法。2. 学习和了解人工智能的基本概念和原理,例如机器学习、深度学习、自然语言处理等。3. 使用Python中的机器学习库(例如scikit-lear
2023-10-11

Go语言开发人工智能应用的入门指南

Go语言,简称Golang,是一种由Google开发的开源编程语言,自其发布以来在开发人员之间越来越受欢迎。它以其简洁的语法、高效的性能和丰富的标准库而闻名,适用于各种应用领域,包括人工智能(AI)应用开发。人工智能是一个快速发展的领域,其
Go语言开发人工智能应用的入门指南
2023-11-20

学习Python人工智能库的核心技能,构建智能应用

打造智能应用:掌握Python人工智能库的核心技能,需要具体代码示例摘要:本文旨在介绍如何使用Python人工智能库开发智能应用。首先,我们将简要介绍Python人工智能库的重要性和应用领域。接下来,我们将重点介绍四个核心技能,包括数据处理
学习Python人工智能库的核心技能,构建智能应用
2023-12-23

人工智能用Python实时监控

编程学习网:最近突然有个奇妙的想法,就是当我对着电脑屏幕的时候,电脑会先识别屏幕上的人脸是否是本人,如果识别是本人的话需要回答电脑说的暗语,答对了才会解锁并且有三次机会。
人工智能用Python实时监控
2024-04-23

python人工智能算法之人工神经网络怎么使用

本篇内容介绍了“python人工智能算法之人工神经网络怎么使用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!人工神经网络(Artificia
2023-07-05

ai人工智能常用的算法有哪些

人工智能常用的算法有以下几种:1. 逻辑回归(Logistic Regression):用于二分类任务,通过线性回归模型将输入数据映射到一个概率值。2. 决策树(Decision Tree):通过树状结构对数据进行分类或回归。3. 支持向量
2023-09-21

golang人工智能框架怎么使用

在Golang中使用人工智能框架需要以下步骤:1. 安装相应的人工智能框架:比如TensorFlow、PyTorch等。可以使用go get命令从GitHub上下载并安装框架的Go绑定库。2. 导入所需的包:根据框架的要求,导入相应的包,比
2023-10-18

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录