我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python人工智能tensorflow函数tf.nn.dropout使用方法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python人工智能tensorflow函数tf.nn.dropout使用方法

前言

神经网络在设置的神经网络足够复杂的情况下,可以无限逼近一段非线性连续函数,但是如果神经网络设置的足够复杂,将会导致过拟合(overfitting)的出现,就好像下图这样。

看到这个蓝色曲线,我就知道:

很明显蓝色曲线是overfitting的结果,尽管它很好的拟合了每一个点的位置,但是曲线是歪歪曲曲扭扭捏捏的,这个的曲线不具有良好的鲁棒性,在实际工程实验中,我们更希望得到如黑色线一样的曲线。

tf.nn.dropout函数介绍

tf.nn.dropout是tensorflow的好朋友,它的作用是为了减轻过拟合带来的问题而使用的函数,它一般用在每个连接层的输出。

Dropout就是在不同的训练过程中,按照一定概率使得某些神经元停止工作。也就是让每个神经元按照一定的概率停止工作,这次训练过程中不更新权值,也不参加神经网络的计算。但是它的权重依然存在,下次更新时可能会使用到它。

def dropout(x, keep_prob, noise_shape=None, seed=None, name=None)

x 一般是每一层的输出

keep_prob,保留keep_prob的神经元继续工作,其余的停止工作与更新

在实际定义每一层神经元的时候,可以加入dropout。

def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):
    layer_name = 'layer%s'%n_layer
    with tf.name_scope(layer_name):
        with tf.name_scope("Weights"):
            Weights = tf.Variable(tf.random_normal([in_size,out_size]),name = "Weights")
            tf.summary.histogram(layer_name+"/weights",Weights)
        with tf.name_scope("biases"):
            biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")
            tf.summary.histogram(layer_name+"/biases",biases)
        with tf.name_scope("Wx_plus_b"):
            Wx_plus_b = tf.matmul(inputs,Weights) + biases
            #dropout一般加载每个神经层的输出
            Wx_plus_b = tf.nn.dropout(Wx_plus_b,keep_prob)
            #看这里看这里,dropout在这里。
            tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)
        if activation_function == None :
            outputs = Wx_plus_b 
        else:
            outputs = activation_function(Wx_plus_b)
        tf.summary.histogram(layer_name+"/outputs",outputs)
        return outputs

但需要注意的是,神经元的输出层不可以定义dropout参数。因为输出层就是输出的是结果,在输出层定义参数的话,就会导致输出结果被dropout掉。

例子

本次例子使用sklearn.datasets,在进行测试的时候,我们只需要改变最下方keep_prob:0.5的值即可,1代表不进行dropout。

代码

import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y)
X_train,X_test,Y_train,Y_test = train_test_split(X,y,test_size = 500)
def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):
    layer_name = 'layer%s'%n_layer
    with tf.name_scope(layer_name):
        with tf.name_scope("Weights"):
            Weights = tf.Variable(tf.random_normal([in_size,out_size]),name = "Weights")
            tf.summary.histogram(layer_name+"/weights",Weights)
        with tf.name_scope("biases"):
            biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")
            tf.summary.histogram(layer_name+"/biases",biases)
        with tf.name_scope("Wx_plus_b"):
            Wx_plus_b = tf.matmul(inputs,Weights) + biases
            Wx_plus_b = tf.nn.dropout(Wx_plus_b,keep_prob)
            tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)
        if activation_function == None :
            outputs = Wx_plus_b 
        else:
            outputs = activation_function(Wx_plus_b)
        tf.summary.histogram(layer_name+"/outputs",outputs)
        return outputs
def compute_accuracy(x_data,y_data,prob = 1):
    global prediction
    y_pre = sess.run(prediction,feed_dict = {xs:x_data,keep_prob:prob})
    correct_prediction = tf.equal(tf.arg_max(y_data,1),tf.arg_max(y_pre,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    result = sess.run(accuracy,feed_dict = {xs:x_data,ys:y_data,keep_prob:prob})
    return result
keep_prob = tf.placeholder(tf.float32)
xs = tf.placeholder(tf.float32,[None,64])
ys = tf.placeholder(tf.float32,[None,10])
l1 = add_layer(xs,64,100,'l1',activation_function=tf.nn.tanh, keep_prob = keep_prob)
l2 = add_layer(l1,100,100,'l2',activation_function=tf.nn.tanh, keep_prob = keep_prob)
prediction = add_layer(l1,100,10,'l3',activation_function = tf.nn.softmax, keep_prob = 1)
with tf.name_scope("loss"):
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=ys,logits = prediction),name = 'loss')
    tf.summary.scalar("loss",loss)
train = tf.train.AdamOptimizer(0.01).minimize(loss)
init = tf.initialize_all_variables()
merged = tf.summary.merge_all()
with tf.Session() as sess:
    sess.run(init)
    train_writer =  tf.summary.FileWriter("logs/strain",sess.graph)
    test_writer = tf.summary.FileWriter("logs/test",sess.graph)
    for i in range(5001):
        sess.run(train,feed_dict = {xs:X_train,ys:Y_train,keep_prob:0.5})
        if i % 500 == 0:
            print("训练%d次的识别率为:%f。"%((i+1),compute_accuracy(X_test,Y_test,prob=0.5)))
            train_result = sess.run(merged,feed_dict={xs:X_train,ys:Y_train,keep_prob:0.5})
            test_result = sess.run(merged,feed_dict={xs:X_test,ys:Y_test,keep_prob:0.5})
            train_writer.add_summary(train_result,i)
            test_writer.add_summary(test_result,i) 

keep_prob = 0.5

训练结果为:

训练1次的识别率为:0.086000。
训练501次的识别率为:0.890000。
训练1001次的识别率为:0.938000。
训练1501次的识别率为:0.952000。
训练2001次的识别率为:0.952000。
训练2501次的识别率为:0.946000。
训练3001次的识别率为:0.940000。
训练3501次的识别率为:0.932000。
训练4001次的识别率为:0.970000。
训练4501次的识别率为:0.952000。
训练5001次的识别率为:0.950000。

这是keep_prob = 0.5时tensorboard中的loss的图像:

keep_prob = 1

训练结果为:

训练1次的识别率为:0.160000。
训练501次的识别率为:0.754000。
训练1001次的识别率为:0.846000。
训练1501次的识别率为:0.854000。
训练2001次的识别率为:0.852000。
训练2501次的识别率为:0.852000。
训练3001次的识别率为:0.860000。
训练3501次的识别率为:0.854000。
训练4001次的识别率为:0.856000。
训练4501次的识别率为:0.852000。
训练5001次的识别率为:0.852000。

这是keep_prob = 1时tensorboard中的loss的图像:

可以明显看出来keep_prob = 0.5的训练集和测试集的曲线更加贴近。

以上就是python人工智能tensorflow函数tf.nn.dropout使用示例的详细内容,更多关于tensorflow函数tf.nn.dropout的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python人工智能tensorflow函数tf.nn.dropout使用方法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

人工智能使用python的原因

这篇文章主要介绍人工智能使用python的原因,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!python主要应用领域有哪些1、云计算,典型应用OpenStack。2、WEB前端开发,众多大型网站均为Python开发。
2023-06-14

python人工智能算法之人工神经网络怎么使用

本篇内容介绍了“python人工智能算法之人工神经网络怎么使用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!人工神经网络(Artificia
2023-07-05

Python人工智能框架怎么使用

Python有许多流行的人工智能框架,如TensorFlow, PyTorch, Keras等。下面是一个使用TensorFlow和Keras的示例:1. 首先,安装所需的库。在命令行中运行以下命令:pip install tensorfl
2023-10-21

PHP 函数中人工智能技术的应用

ai 技术已与 php 函数相结合,增强了应用程序的功能。具体的 ai 应用包括:使用机器学习算法对文本进行分类,如朴素贝叶斯。使用自然语言处理技术进行深入文本分析,如分词和词干提取。PHP 函数中人工智能技术的应用人工智能(AI)正迅速
PHP 函数中人工智能技术的应用
2024-05-01

怎么用python实现人工智能算法

要使用Python实现人工智能算法,你可以按照以下步骤进行操作:1. 确定算法类型:首先,你需要确定你想要实现的人工智能算法类型,比如机器学习算法(如决策树、神经网络或支持向量机)、深度学习算法(如卷积神经网络或循环神经网络)或其他类型的算
2023-10-11

Python人工智能常用库Numpy使用入门

  第一章 jupyter notebook简单教程  命令模式按键esc开启  Enter : 转入编辑模式  Shift-Enter : 运行本单元,选中下个单元  Ctrl-Enter : 运行本单元  Alt-Enter : 运行本
2023-06-02

python人工智能算法之线性回归怎么使用

这篇文章主要介绍“python人工智能算法之线性回归怎么使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“python人工智能算法之线性回归怎么使用”文章能帮助大家解决问题。线性回归是一种常见的机器
2023-07-05

PHP函数在人工智能领域的应用如何?

PHP函数在人工智能领域的应用随着人工智能技术不断发展,PHP 正因其丰富而强大的函数库而成为该领域中一个越来越重要的工具。本文将探讨 PHP 函数如何在实际 AI 应用中发挥关键作用,并提供一些实战案例。机器学习模型训练PHP 函数
PHP函数在人工智能领域的应用如何?
2024-04-13

如何用Python理解人工智能优化算法

这篇文章给大家介绍如何用Python理解人工智能优化算法,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。 概述梯度下降是神经网络中流行的优化算法之一。一般来说,我们想要找到最小化误差函数的权重和偏差。梯度下降算法迭代地更
2023-06-16

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录