我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C# OpenCV实现形状匹配的方法详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C# OpenCV实现形状匹配的方法详解

1. 多角度模板匹配测试效果如下图:

图1-1 

图1-2

图1-3

正负角度均可正常识别,识别角度偏差<1°

2. 下面分享一下开发过程:

a). ROI区域的生成,基于GDI+完成图形绘制,如图

绘制模板设置区域,用来生成需要的模板特征。

ROI区域绘制代码如下:

        /// <summary>
        /// 区域绘制
        /// </summary>
        /// <param name="graphics"></param>
        /// <param name="regionEx"></param>
        /// <param name="sizeratio"></param>
       public  static void drawRegion(this Graphics graphics, RegionEx regionEx,float sizeratio=1)
        {       
            if (regionEx?.Region is RectangleF)
            {
                RectangleF rect = (RectangleF)regionEx.Region;
                graphics.DrawRectangle(new Pen(regionEx.Color, regionEx.Size), rect.X / sizeratio, rect.Y / sizeratio,
                                                    rect.Width / sizeratio, rect.Height / sizeratio);
            }
            else if(regionEx?.Region is RotatedRectF)
            {
                RotatedRectF rrect = (RotatedRectF)regionEx.Region;
               
                using (var graph = new GraphicsPath())
                {
                    PointF Center = new PointF(rrect.cx / sizeratio, rrect.cy / sizeratio);
                 
                    graph.AddRectangle(new RectangleF( rrect.getrectofangleEqualZero().X / sizeratio,
                        rrect.getrectofangleEqualZero().Y / sizeratio,
                        rrect.getrectofangleEqualZero().Width / sizeratio,
                        rrect.getrectofangleEqualZero().Height / sizeratio));
                    graph.AddLine(new PointF((rrect.cx - rrect.Width / 2) / sizeratio, rrect.cy / sizeratio),
                                 new PointF((rrect.cx + rrect.Width/2) / sizeratio, rrect.cy / sizeratio));
                    /
                    RotatedRectF rotatedRectF = new RotatedRectF((rrect.cx + rrect.Width / 2) / sizeratio,
                        rrect.cy / sizeratio,20 / sizeratio, 10 / sizeratio, 0);
                    PointF[] point2Fs = rotatedRectF.getPointF();
                    graph.AddLine(new PointF((rrect.cx + rrect.Width / 2) / sizeratio,
                        rrect.cy / sizeratio), new PointF(point2Fs[0].X, point2Fs[0].Y));
                    graph.AddLine(new PointF((rrect.cx + rrect.Width / 2) / sizeratio,
                       rrect.cy / sizeratio), new PointF(point2Fs[3].X, point2Fs[3].Y));
                    /
                    var a = rrect.angle * (Math.PI / 180);
                    var n1 = (float)Math.Cos(a);
                    var n2 = (float)Math.Sin(a);
                    var n3 = -(float)Math.Sin(a);
                    var n4 = (float)Math.Cos(a);
                    var n5 = (float)(Center.X * (1 - Math.Cos(a)) + Center.Y * Math.Sin(a));
                    var n6 = (float)(Center.Y * (1 - Math.Cos(a)) - Center.X * Math.Sin(a));
                    graph.Transform(new Matrix(n1, n2, n3, n4, n5, n6));
                    graphics.DrawPath(new Pen(regionEx.Color, regionEx.Size), graph);
                  
                }
            }           
            else if (regionEx?.Region is RotatedCaliperRectF)
            {
                RotatedCaliperRectF rrect = (RotatedCaliperRectF)regionEx.Region;
 
                using (var graph = new GraphicsPath())
                {
                    PointF Center = new PointF(rrect.cx / sizeratio, rrect.cy / sizeratio);
 
                    graph.AddRectangle(new RectangleF(rrect.getrectofangleEqualZero().X / sizeratio,
                        rrect.getrectofangleEqualZero().Y / sizeratio,
                        rrect.getrectofangleEqualZero().Width / sizeratio,
                        rrect.getrectofangleEqualZero().Height / sizeratio));
                    graph.AddLine(new PointF((rrect.cx - rrect.Width / 2) / sizeratio, rrect.cy / sizeratio),
                                 new PointF((rrect.cx + rrect.Width / 2) / sizeratio, rrect.cy / sizeratio));
                    /
                    RotatedCaliperRectF rotatedRectF = new RotatedCaliperRectF((rrect.cx + rrect.Width / 2) / sizeratio,
                        rrect.cy / sizeratio, 20 / sizeratio, 10 / sizeratio, 0);
                    PointF[] point2Fs = rotatedRectF.getPointF();
                    graph.AddLine(new PointF((rrect.cx + rrect.Width / 2) / sizeratio,
                        rrect.cy / sizeratio), new PointF(point2Fs[0].X, point2Fs[0].Y));
                    graph.AddLine(new PointF((rrect.cx + rrect.Width / 2) / sizeratio,
                       rrect.cy / sizeratio), new PointF(point2Fs[3].X, point2Fs[3].Y));
                    /
                    var a = rrect.angle * (Math.PI / 180);
                    var n1 = (float)Math.Cos(a);
                    var n2 = (float)Math.Sin(a);
                    var n3 = -(float)Math.Sin(a);
                    var n4 = (float)Math.Cos(a);
                    var n5 = (float)(Center.X * (1 - Math.Cos(a)) + Center.Y * Math.Sin(a));
                    var n6 = (float)(Center.Y * (1 - Math.Cos(a)) - Center.X * Math.Sin(a));
                    graph.Transform(new Matrix(n1, n2, n3, n4, n5, n6));
                    graphics.DrawPath(new Pen(regionEx.Color, regionEx.Size), graph);
 
                }
            }
            else if (regionEx?.Region is CircleF)
            {
                CircleF circle = (CircleF)regionEx.Region;
                graphics.DrawEllipse(new Pen(regionEx.Color, regionEx.Size), (circle.Centerx - circle.Radius) / sizeratio,
                      (circle.Centery - circle.Radius) / sizeratio, 2 * circle.Radius / sizeratio, 2 * circle.Radius / sizeratio);
 
            }
            else if (regionEx?.Region is PointF)
            {
                PointF point = (PointF)regionEx.Region;
                graphics.DrawPolygon(new Pen(regionEx.Color, regionEx.Size), new PointF[] { new PointF (
                    point.X/sizeratio,point.Y/sizeratio
                    )});
            }
            else if (regionEx?.Region is PolygonF)
            {
                PolygonF polygon = (PolygonF)regionEx.Region;
                List<PointF> temlist = new List<PointF>();
                foreach (var s in polygon.Points)
                    temlist.Add(new PointF(s.X / sizeratio, s.Y / sizeratio));
                graphics.DrawPolygon(new Pen(regionEx.Color, regionEx.Size), temlist.ToArray());
            }
            else if (regionEx?.Region is LineF)
            {
                LineF line = (LineF)regionEx.Region;            
                graphics.DrawLine(new Pen(regionEx.Color, regionEx.Size), line.x1/ sizeratio, line.y1/ sizeratio,
                   line.x2/ sizeratio, line.y2/ sizeratio);
            }
            else if (regionEx?.Region is CrossF)
            {
                CrossF cross = (CrossF)regionEx.Region;
                graphics.DrawLine(new Pen(regionEx.Color, regionEx.Size), (cross.x1- cross.width/2) / sizeratio, cross.y1 / sizeratio,
                  (cross.x1 + cross.width / 2) / sizeratio, cross.y1 / sizeratio);
                graphics.DrawLine(new Pen(regionEx.Color, regionEx.Size), cross.x1 / sizeratio, (cross.y1- cross.height/2) / sizeratio,
                  cross.x1 / sizeratio, (cross.y1 + cross.height / 2) / sizeratio);
                graphics.DrawEllipse(new Pen(regionEx.Color, regionEx.Size), (cross.x1 - cross.radius) / sizeratio,
                       (cross.y1 - cross.radius) / sizeratio, 2 * cross.radius / sizeratio, 2 * cross.radius / sizeratio);
            }
            else if(regionEx?.Region is SectorF)
            {
                SectorF sectorF=(SectorF)regionEx.Region;
 
                //graphics.DrawEllipse(MyPens.assist, sectorF.x / sizeratio, sectorF.y / sizeratio,
                //  sectorF.width / sizeratio, sectorF.height / sizeratio);
 
                graphics.DrawPie(new Pen(regionEx.Color, regionEx.Size),
                    sectorF.x / sizeratio, sectorF.y / sizeratio, 
                    sectorF.width / sizeratio, sectorF.height / sizeratio, 
                    sectorF.startAngle, sectorF.sweepAngle);
            }
            else if (regionEx?.Region is Region)
            {
                Region unionRegion = (Region)regionEx?.Region;
                //RectangleF rectangleF = unionRegion.GetBounds(graphics);
               
                //Matrix matrix = new Matrix();
                //matrix.Scale(1/sizeratio, 1/sizeratio);
                //unionRegion.Transform(matrix);
 
                //RectangleF rectangleF2= unionRegion.GetBounds(graphics);
 
                graphics.FillRegion(Brushes.Orange, unionRegion);
             
            }
            else
                ;
        }

b). 模板创建

模板如图:

选择稳定唯一的形状特征,设置合适的参数,用来生成模板,此基础版生成的特征为闭合的轮廓,后期版本会推出非闭合的多轮廓形状匹配算法。

模板创建代码如下:

         //创建模板
        private void btncreateModel_Click(object sender, EventArgs e)
        {
            if (GrabImg == null || GrabImg.Width <= 0)
            {
                MessageBox.Show("未获取图像");
                return;
            }
 
            List<RectangleF> roiList = currvisiontool.getRoiList<RectangleF>();
            if (roiList.Count <= 0)
            {
                MessageBox.Show("请设置模板创建区域{矩形}");
                return;
 
            }
            if (MessageBox.Show("确认创建新模板?", "Info", MessageBoxButtons.YesNo, MessageBoxIcon.Question)
                                  == DialogResult.Yes)
            {
                CVRect cVRect = new CVRect((int)roiList[0].X, (int)roiList[0].Y, (int)roiList[0].Width, (int)roiList[0].Height);
                Mat tp = MatExtension.Crop_Mask_Mat(GrabImg, cVRect);
 
                templateContour = null;
                coutourLen = 100;
                NumMincoutourLen.Value=100;
                contourArea = 100;
                NumMinContourArea.Value=100;
                double modelx = 0, modely = 0;
 
 
                runTool = new ShapeMatchTool();
                parmaData = new ShapeMatchData();
                (parmaData as ShapeMatchData).Segthreshold = (double)NumSegthreshold.Value;
 
                modeltp = (runTool as ShapeMatchTool).CreateTemplateContours(tp,
                     (parmaData as ShapeMatchData).Segthreshold, cVRect,
                    ref templateContour,
                    ref coutourLen, ref contourArea, ref modelx, ref modely, ref modelangle);
 
                picTemplate.Image = BitmapConverter.ToBitmap(modeltp);
                if (templateContour == null)
                {
                    MessageBox.Show("模板创建失败!");
                    return;
                }
                modelx += cVRect.X;
                modely += cVRect.Y;
                lIstModelInfo.Items.Clear();
                lIstModelInfo.Items.Add(new ListViewItem(
                    new string[] { "BaseX", modelx.ToString("f3") }));
                lIstModelInfo.Items.Add(new ListViewItem(
                  new string[] { "BaseY", modely.ToString("f3") }));
                lIstModelInfo.Items.Add(new ListViewItem(
                  new string[] { "BaseAngle", modelangle.ToString("f3") }));
                lIstModelInfo.Items.Add(new ListViewItem(
                 new string[] { "ContourLength", coutourLen.ToString("f3") }));
                lIstModelInfo.Items.Add(new ListViewItem(
                 new string[] { "ContourArea", contourArea.ToString("f3") }));
 
                modelOrigion = string.Format("{0},{1},{2}",
                      modelx.ToString("f3"),
                          modely.ToString("f3"),
                              modelangle.ToString("f3"));
 
              if(coutourLen * 0.8> (double)NumMincoutourLen.Maximum||
                    contourArea * 0.8> (double)NumMinContourArea.Maximum)
                {
                    MessageBox.Show("模板创建完成失败,模板区域过大!");
                    return;
                }
                NumMincoutourLen.Value = (decimal)(coutourLen *0.8);
                NumMaxcoutourLen.Value = (decimal)(coutourLen *1.2);
            
                NumMinContourArea.Value = (decimal)(contourArea * 0.8);
                NumMaxContourArea.Value = (decimal)(contourArea * 1.2);
 
                NumMatchValue.Value = (decimal)0.5;
                MessageBox.Show("模板创建完成!");
            }
 
        }

c). 模板匹配

多角度轮廓匹配算法,同时通过钜来获取中心,和角度

  //模板匹配
        void TestModelMatch()
        {
            if (GrabImg == null || GrabImg.Width <= 0)
            {
                stuModelMatchData.runFlag = false;
                MessageBox.Show("未获取图像");
                return;
            }
 
            if (templateContour == null)
            {
                stuModelMatchData.runFlag = false;
                MessageBox.Show("模板不存在,请先创建模板!");
                return;
            }
            runTool = new ShapeMatchTool();
            parmaData = new ShapeMatchData();
            (parmaData as ShapeMatchData).tpContour = templateContour;
            (parmaData as ShapeMatchData).Segthreshold = (double)NumSegthreshold.Value;
            (parmaData as ShapeMatchData).MatchValue = (double)NumMatchValue.Value;
            (parmaData as ShapeMatchData).MincoutourLen = (int)NumMincoutourLen.Value;
            (parmaData as ShapeMatchData).MaxcoutourLen = (int)NumMaxcoutourLen.Value;
            (parmaData as ShapeMatchData).MinContourArea = (int)NumMinContourArea.Value;
            (parmaData as ShapeMatchData).MaxContourArea = (int)NumMaxContourArea.Value;
            (parmaData as ShapeMatchData).baseAngle = modelangle;
 
 
            ResultOfToolRun = runTool.Run<ShapeMatchData>(GrabImg, parmaData as ShapeMatchData);
 
            currvisiontool.clearAll();
            currvisiontool.dispImage(ResultOfToolRun.resultToShow);
 
            ShapeMatchResult shapeMatchResult = ResultOfToolRun as ShapeMatchResult;
 
            if (shapeMatchResult.scores.Count <= 0)
            {
                currvisiontool.DrawText(new TextEx("模板匹配失败!") {x=1000,y=10, brush = new SolidBrush(Color.Red) });
 
                currvisiontool.AddTextBuffer(new TextEx("模板匹配失败!") { x = 1000, y = 10, brush = new SolidBrush(Color.Red) });
 
                stuModelMatchData.runFlag = false;
                return;
            }
            currvisiontool.DrawText(new TextEx("得分:" + shapeMatchResult.scores[0].ToString("f3")));
            currvisiontool.AddTextBuffer(new TextEx("得分:" + shapeMatchResult.scores[0].ToString("f3")));
 
            currvisiontool.DrawText(new TextEx("偏转角度:" + shapeMatchResult.rotations[0].ToString("f3")) { x = 10, y = 100 });
            currvisiontool.AddTextBuffer(new TextEx("偏转角度:" + shapeMatchResult.rotations[0].ToString("f3")) { x = 10, y = 100 });
 
            currvisiontool.DrawText(new TextEx(string.Format("匹配点位X:{0},Y:{1}", shapeMatchResult.positions[0].X.ToString("f3"),
                shapeMatchResult.positions[0].Y.ToString("f3")))
            { x = 10, y = 200 });
            currvisiontool.AddTextBuffer(new TextEx(string.Format("匹配点位X:{0},Y:{1}", shapeMatchResult.positions[0].X.ToString("f3"),
                shapeMatchResult.positions[0].Y.ToString("f3")))
            { x = 10, y = 200 });
 
            stuModelMatchData.matchPoint = shapeMatchResult.positions[0];
            stuModelMatchData.matchOffsetAngle = shapeMatchResult.rotations[0];
            stuModelMatchData.matchScore = shapeMatchResult.scores[0];
            stuModelMatchData.runFlag = true;
 
 
        }

3. 关键部位代码如下,包含模板创建,模板多角度匹配等

a)创建形状轮廓模板核心代码如下:

        /// <summary>
        /// 创建形状轮廓模板
        /// </summary>
        /// <param name="img_template">模板图像</param>
        ///  <param name="Segthreshold">分割阈值</param>
        /// <param name="templateContour">模板轮廓</param>
        /// <param name="coutourLen">模板轮廓长度</param>
        /// <param name="contourArea">模板轮廓面积</param>
        ///  <param name="modelx">模板轮廓X</param>
        ///   <param name="modely">模板轮廓Y</param>
        ///    <param name="modelangle">模板轮廓角度</param>
        /// <returns>返回绘制图</returns>
        public Mat CreateTemplateContours(Mat img_template,double Segthreshold, CVRect boundingRect,
            ref CVPoint[] templateContour, ref double coutourLen, ref double contourArea,
            ref double modelx,ref double modely,ref double modelangle)
        {
            //灰度化
            //Mat gray_img_template = new Mat();
            //Cv2.CvtColor(img_template, gray_img_template, ColorConversionCodes.BGR2GRAY);
 
            //阈值分割
            Mat thresh_img_template = new Mat();
            Cv2.Threshold(img_template, thresh_img_template, Segthreshold, 255, ThresholdTypes.Binary);
            //开运算处理,提出白色噪点
            Mat ellipse = Cv2.GetStructuringElement(MorphShapes.Ellipse, new Size(3, 3));   
            Cv2.MorphologyEx(thresh_img_template, thresh_img_template, MorphTypes.Open, ellipse);
 
            //Mat cannyMat = new Mat();
            //Cv2.Canny(thresh_img_template, cannyMat, Segthreshold, 255);
 
            //寻找边界
            CVPoint[][] contours_template;
            //Vector<Vector<CVPoint>> contours_template=new Vector<Vector<CVPoint>>();
            //Vector<Vec4i> hierarchy=new Vector<Vec4i>();
        //    HierarchyIndex[] hierarchy;
            Cv2.FindContours(thresh_img_template, out contours_template, out _, RetrievalModes.Tree,
                ContourApproximationModes.ApproxNone);
 
            CVPoint[][] ExceptContours = ContourOperate.ExceptBoundPoints(img_template.BoundingRect(), contours_template);
            
            int count = ExceptContours.ToList<CVPoint[]>().Count;
            List<CVPoint[]> ModelContours=new List<CVPoint[]>();
        
            for (int i=0;i< count; i++)
            {
                if(Cv2.ContourArea(ExceptContours[i])>= contourArea&&
                    Cv2.ArcLength(ExceptContours[i],false)>= coutourLen)
                //if (ExceptContours[i].Length > 30)//至少30点有效
                    ModelContours.Add(ExceptContours[i]);
            }
            ModelContours = ModelContours.OrderByDescending(s => s.Length).ToList();
            //绘制边界
            Mat dst = new Mat();
            Cv2.CvtColor(img_template, dst, ColorConversionCodes.GRAY2BGR);
            if(ModelContours.Count>0)
            {
                Cv2.DrawContours(dst, ModelContours, 0, new Scalar(0, 0, 255));
                //获取重心点
                Moments M;
                M = Cv2.Moments(ModelContours[0]);
                double cX = (M.M10 / M.M00);
                double cY = (M.M01 / M.M00);
                
                float a = (float)(M.M20 / M.M00 - cX * cX);
                float b = (float)(M.M11 / M.M00 - cX * cY);
                float c = (float)(M.M02 / M.M00 - cY * cY);
                //计算角度(0~180)
              //  double tanAngle = Cv2.FastAtan2(2 * b, (a - c)) / 2;
 
                //计算角度2(-90~90)
             //   double ang = (Math.Atan2(2 * b, (a - c)) * 180 / Math.PI) / 2;
 
                //double ang2=  Cv2.MinAreaRect(ModelContours[0]).Angle;
 
                //if (tanAngle > 90)
                //    tanAngle -= 180;
                //当前轮廓旋转矩
                RotatedRect currrect = Cv2.MinAreaRect(ModelContours[0]);
                //绘制旋转矩形
                   dst.DrawRotatedRect(currrect, Scalar.Lime);
 
                //绘制目标边界
                Cv2.DrawContours(dst, ModelContours, 0, new Scalar(0, 0, 255));
                //显示目标中心
                dst.drawCross(new CVPoint((int)cX, (int)cY),
                       new Scalar(0, 255, 0), 10, 2);
                //
 
 
                //CVPoint[] HullP = Cv2.ConvexHull(ModelContours[0], true);//顺时针方向
 
                //List<CVPoint[]> HullPList = new List<CVPoint[]>();
 
                //HullPList.Add(HullP);
 
                Cv2.Polylines(dst, HullPList, true, Scalar.Red);
 
                //Point2f cVPoint = CalBestDisP(new Point2d(cX, cY), HullP);
 
                //double ang3 = ang;
 
                //if(!(cVPoint.X==0&& cVPoint.Y == 0))
    //            {
                //    //计算角度2(-180~180)
                //    ang3 = calAngleOfLx(cX, cY, cVPoint.X, cVPoint.Y);
                //    Cv2.Line(dst, (int)cX, (int)cY, (int)cVPoint.X, (int)cVPoint.Y, Scalar.DarkOrange);
                //}
                            
                //轮廓点位
                modelx = cX;
                modely = cY;
                modelangle = currrect.Angle;
 
                //轮廓长度
                coutourLen = Cv2.ArcLength(ModelContours[0],false);
                contourArea = Cv2.ContourArea(ModelContours[0]);
                templateContour = ModelContours[0];
            }    
            else
            {
                //轮廓点位
                modelx = 0;
                modely = 0;
                modelangle = 0;
 
                //轮廓长度
                coutourLen = 0;
                contourArea = 0;
                templateContour =null;
            }
            return dst;
        }

b)形状多角度匹配核心算法如下:

    /// <summary>
        /// 形状匹配
        /// </summary>
        /// <param name="image">输入图像</param>
        /// <param name="imgTemplatecontours">模板轮廓</param>
        ///  <param name="Segthreshold">分割阈值</param>
        /// <param name="MatchValue">匹配值</param>
        /// <param name="MincoutourLen">轮廓最小长度</param>
        /// <param name="MaxcoutourLen">轮廓最大长度</param>
        /// <param name="MinContourArea">轮廓最小面积</param>
        /// <param name="MaxContourArea">轮廓最大面积</param>
        /// <param name="shapeMatchResult">匹配结果</param>
        /// <param name="isMultipleTemplates">是否使用多模板</param>
        /// <returns>返回绘制图</returns>
        bool ShapeTemplateMatch(Mat image, CVPoint[] imgTemplatecontours, double Segthreshold,
            double MatchValue, int MincoutourLen, int MaxcoutourLen,
             double MinContourArea, double MaxContourArea,  double baseAngle,
             ref ShapeMatchResult shapeMatchResult,
             bool isMultipleTemplates=false)
        {
        
            //List<Point2d> image_coordinates = new List<Point2d>();
            //灰度化
            //Mat gray_img=new Mat();
            //Cv2.CvtColor(image, gray_img, ColorConversionCodes.BGR2GRAY);
            Mat dst = new Mat();
            Cv2.CvtColor(image, dst, ColorConversionCodes.GRAY2BGR);
            //阈值分割
            Mat thresh_img = new Mat();
            Cv2.Threshold(image, thresh_img, Segthreshold, 255, ThresholdTypes.Binary);
 
 
            #region------此处增加与模板创建时候同样的图像处理--------
            //开运算处理,提出白色噪点
            Mat ellipse = Cv2.GetStructuringElement(MorphShapes.Ellipse, new Size(3, 3));
    
            Cv2.MorphologyEx(thresh_img, thresh_img, MorphTypes.Open, ellipse);
            #endregion
 
 
            //Mat cannyMat = new Mat();
            //Cv2.Canny(thresh_img, cannyMat, Segthreshold, 255);
 
            //寻找边界
            CVPoint[][] contours_img;
            //HierarchyIndex[] hierarchy;
            Cv2.FindContours(thresh_img, out contours_img, out _, RetrievalModes.Tree,
                 ContourApproximationModes.ApproxNone);
            //根据形状模板进行匹配
            int min_pos = -1;
            double min_value = MatchValue;//匹配分值
            List<CVPoint[]> points = contours_img.ToList<CVPoint[]>();
 
            //List<double> angleList = new List<double>();
            for (int i = 0; i < points.Count; i++)
            {
                //计算轮廓面积,筛选掉一些没必要的小轮廓
                if (Cv2.ContourArea(contours_img[i]) < MinContourArea ||
                              Cv2.ContourArea(contours_img[i]) > MaxContourArea)
                    continue;
                //轮廓长度不达标            
                if (Cv2.ArcLength(contours_img[i], false) < MincoutourLen ||
                              Cv2.ArcLength(contours_img[i], false) > MaxcoutourLen)
                    continue;
 
                //得到匹配分值 ,值越小相似度越高
                double value = Cv2.MatchShapes(contours_img[i], imgTemplatecontours,
                                                           ShapeMatchModes.I3, 0.0);
                value = 1 - value;
 
                //将匹配分值与设定分值进行比较 
                if (value >= min_value)
                {
                    min_pos = i;
 
                    //将目标的得分都存在数组中 
                    shapeMatchResult.scores.Add(value);
                    //匹配到的轮廓
                    shapeMatchResult.contours.Add(contours_img[min_pos]);
                    
                }
                                
            }
            
            int count = shapeMatchResult.scores.Count;
            if(count<=0)
            {
                shapeMatchResult.resultToShow = dst;
                shapeMatchResult.exceptionInfo = "模板匹配失败!";
                return false;
            }
 
            if (isMultipleTemplates)
            {
                for (int j = 0; j < count; j++)
                {
                    //绘制目标边界
                    Cv2.DrawContours(dst, shapeMatchResult.contours, j, new Scalar(0, 0, 255));
                    //得分绘制
                    Cv2.PutText(dst,
                        string.Format("Score:{0};Angle:{1}", shapeMatchResult.scores[j].ToString("F3"),
                        shapeMatchResult.rotations[j].ToString("F3")),
                             //anglebuf[j].ToString("F3")),
                             new CVPoint(shapeMatchResult.contours[j][0].X + 10, shapeMatchResult.contours[j][0].Y - 10),
                                        HersheyFonts.HersheyDuplex, 1, Scalar.Yellow);
                    //显示目标中心并提取坐标点
                    dst.drawCross(new CVPoint((int)shapeMatchResult.positions[j].X, (int)shapeMatchResult.positions[j].Y),
                           new Scalar(0, 255, 0), 10, 2);
                    //当前轮廓旋转矩
                    RotatedRect currrect = Cv2.MinAreaRect(shapeMatchResult.contours[j]);
 
                    dst.DrawRotatedRect(currrect, Scalar.Lime);
                }
            }
            else
            {
                double bestScore=  shapeMatchResult.scores.Max();    //最佳得分
                int index = shapeMatchResult.scores.FindIndex(s=>s== bestScore);
              //  double bestangle = shapeMatchResult.rotations[index]; //最佳角度                
            //    Point2d bestpos = shapeMatchResult.positions[index]; //最佳点位
                CVPoint[] bestcontour= shapeMatchResult.contours[index]; //最佳轮廓            
            
                //绘制目标边界
                Cv2.DrawContours(dst, shapeMatchResult.contours, index, new Scalar(0, 0, 255));
            
                //获取重心点                
                Moments M = Cv2.Moments(bestcontour);
                double cX = (M.M10 / M.M00);
                double cY = (M.M01 / M.M00);
 
                float a = (float)(M.M20 / M.M00 - cX * cX);
                float b = (float)(M.M11 / M.M00 - cX * cY);
                float c = (float)(M.M02 / M.M00 - cY * cY);
                //计算角度(0~180)
               // double tanAngle = Cv2.FastAtan2(2 * b, (a - c)) / 2;
                //angleList.Add(tanAngle);
 
                //计算角度2(-90~90)
                //double ang = (Math.Atan2(2 * b, (a - c)) * 180 / Math.PI) / 2;
 
                #region----角度计算方式2---
                //-90~90度
                //由于先验目标最小包围矩形是长方形   
                //因此最小包围矩形的中心和重心的向量夹角为旋转
                RotatedRect rect_template = Cv2.MinAreaRect(imgTemplatecontours);
                RotatedRect rect_search = Cv2.MinAreaRect(bestcontour);
                //两个旋转矩阵是否同向
                float sign = (rect_template.Size.Width - rect_template.Size.Height) * 
                                  (rect_search.Size.Width - rect_search.Size.Height);
                float angle=0;
                if (sign > 0)
                    // 可以直接相减
                    angle = rect_search.Angle - rect_template.Angle;
                else
                    angle = (90 + rect_search.Angle) - rect_template.Angle;
 
                if (angle > 90)
                    angle -= 180;
                #endregion
 
 
                    //显示目标中心并提取坐标点
                dst.drawCross(new CVPoint((int)cX, (int)cY),
                            new Scalar(0, 255, 0), 10, 2);
                //当前轮廓旋转矩
                RotatedRect currrect = Cv2.MinAreaRect(bestcontour);
                //绘制旋转矩形
                dst.DrawRotatedRect(currrect, Scalar.Lime);
           
                //CVPoint[] HullP = Cv2.ConvexHull(bestcontour, true);//顺时针方向
 
                //List<CVPoint[]> HullPList = new List<CVPoint[]>();
 
                //HullPList.Add(HullP);
 
                //Cv2.Polylines(dst, HullPList, true, Scalar.Red);
 
                //Point2f cVPoint = CalBestDisP(new Point2d(cX, cY), HullP);
 
                //double ang3 = ang;
 
                //if (!(cVPoint.X == 0 && cVPoint.Y == 0))
                //{
                //    //计算角度2(-180~180)
                //    ang3 = calAngleOfLx(cX, cY, cVPoint.X, cVPoint.Y);
                //    Cv2.Line(dst, (int)cX, (int)cY, (int)cVPoint.X, (int)cVPoint.Y, Scalar.DarkOrange);
                //}
            
                //double offsetA = ang3 - baseAngle;//偏转角
                //if (offsetA < -180)
                //    offsetA += 360;
                //else if (offsetA > 180)
                //    offsetA -= 360;
 
                    //得分绘制
                //Cv2.PutText(dst,
                //    string.Format("Score:{0};Angle:{1}", bestScore.ToString("F3"),
                //              ang3.ToString("F3")),
                //         new CVPoint(shapeMatchResult.contours[index][0].X + 10, shapeMatchResult.contours[index][0].Y - 10),
                //                    HersheyFonts.HersheyDuplex, 1, Scalar.Yellow);
 
                
                shapeMatchResult.positions.Clear();
                shapeMatchResult.rotations.Clear();
                shapeMatchResult.scores.Clear();
                shapeMatchResult.contours.Clear();
                //将目标的重心坐标都存在数组中 
                shapeMatchResult.positions.Add(new Point2d(cX, cY));//向数组中存放点的坐标
                                                                    
                shapeMatchResult.rotations.Add(angle);//将偏转角度都存在数组中 
                                                         
                shapeMatchResult.scores.Add(bestScore);//将目标的得分都存在数组中 
                                                      
                shapeMatchResult.contours.Add(bestcontour); //匹配到的轮廓
                
            }
 
            shapeMatchResult.resultToShow = dst;
            return true;
        }

到此这篇关于C# OpenCV实现形状匹配的方法详解的文章就介绍到这了,更多相关C# OpenCV形状匹配内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C# OpenCV实现形状匹配的方法详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

opencv C++模板匹配的实现方法

这篇文章主要介绍“opencv C++模板匹配的实现方法”,在日常操作中,相信很多人在opencv C++模板匹配的实现方法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”opencv C++模板匹配的实现方法
2023-06-29

python OpenCV实现图像特征匹配示例详解

这篇文章主要为大家介绍了python OpenCV实现图像特征匹配示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-17

C++ OpenCV实现boxfilter方框滤波的方法详解

box filter的作用很简单,即对局部区域求平均,并把值赋给某个点,一般我们赋给区域中心。本文将用C++实现boxfilter方框滤波,需要的可以了解一下
2022-11-13

shell字符串匹配的实现方法

这篇文章主要介绍了shell字符串匹配的实现方法,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。一、简介 Bash Shell提供了很多字符串和文件处理的命令。如aw
2023-06-09

Qt实现模糊匹配功能的实例详解

对于浏览器的使用,我想大家一定不会陌生吧,输入要搜索的内容时,会出现相应的匹配信息。本文就来用Qt实现模糊匹配功能,感兴趣的可以了解一下
2022-11-13

C++实现延迟的方法详解

这篇文章主要为大家详细介绍了C++实现延迟的三个方法,文中的示例代码讲解详细,对我们深入了解C++有一定的帮助,感兴趣的小伙伴可以学习一下
2022-12-27

C++实现文件逐行读取与字符匹配的示例详解

这篇文章主要为大家详细介绍了如何溧阳C++实现文件逐行读取与字符匹配的功能,文中的示例代码讲解详细,具有一定的借鉴价值,需要的可以参考一下
2023-03-13

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录