我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python中API如何调用

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python中API如何调用

本文小编为大家详细介绍“python中API如何调用”,内容详细,步骤清晰,细节处理妥当,希望这篇“python中API如何调用”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

python中API如何调用

API

API:简单来说就是一组协议、一个工具或者一组规则,定义不同应用程序之间的通信方法,把具体实现的过程隐藏起来,只暴露必须调用的部分给开发者使用。

上面的定义比较官方,这里简单举个例子来说明一下,比如在现在外面的麦当劳等快餐店都采取手机线上下单,前台拿餐的过程。而在这个过程,作为消费者通常在手机上选好对应的餐品然后点击下单付款,然后等待前台叫号拿餐即可。而这个过程具体怎么实现的我们并不知道,整个过程有对应的app或者小程序通信到厨房数据,然后厨师制作出餐。而这个APP和小程序就充当对应的API功能。

举一个简单的例子,一个社交平台它每天收到各种语言的评论信息,而作为对应的分析人员面对复杂的语言数据处理,是一个大难题,有人可能说开发一个模型来实现翻译整合功能,这个方法虽然听起来可行但是成本代价高,其次为了解决一个问题,而又去开发一个比较困难的问题。这个与原本的目标偏离越来越远,这个时候就可以借助国内比较成熟的翻译平台API,直接处理现有的数据。这样相对而言成本代价小,更便捷也更能快速实现现有的目标。而API的作用在这里就毋庸置疑了。

数据接口

数据接口: 简单来说就是一组封装的数据集口令,就是按照对应的规则发送相应的参数,然后返回对应的相关数据信息。API的调用和数据接口的这两个在日常调用时很类似的,相对而言API的范围更宽广,实现的功能也比较多,而数据接口日常充当的就是一个取数工具比较多。

就比如说大型电商公司公司一般用统一的SKU来对商品进行管理,而比如这家公司是作为一个品牌商,它会在不同平台上面进行售卖,而在这些平台上面映射的商品标识ID就不同于公司的SKU。因为公司的SKU不仅基于商品而且还考虑各个地方仓库以及产品的各个型号,而这个映射相对而言就比较复杂。
而在处理不同平台的数据人员一般也不能直接使用公司的数据库来对商品进行分析,因为颗粒度太细,分析起来比较复杂困难,这个时候就可以根据对应功能的要求让开发在现有系统是开发一个单独的数据接口提供相应的公司,避免直接请求数据库过程复杂等相应信息。但数据接口相对实时的数据库存在一定的延迟。

API的调用和数据接口的调用

API和数据接口通过前面的举例论述,大致理解起来也比较简单,而具体怎么实现API的调用和数据接口的调用这里简单介绍一下。
简单来说API的调用和接口的调用都是类似一个HTTP请求,而调用最主要就是根据相应的规则将请求方式、请求头、URL、以及请求体封装好然后发送请求,就可以实现相应的调用。

但数据接口和API两个的调用相比较而言来,一般数据接口比较简单,很多情况下数据接口是在公司内网数据访问所以请求信息比较简单,而API大多是第三方企业开发对外的服务属于一种商业服务,相对而言为了保证请求的安全,考虑的更为全面,加入了AK、SK、签名、时间戳等信息比较复杂。
而追本溯源这两个调用都是类似HTTP请求,具体调用大致差不多,主要就是API调用中包含的请求参数的信息更多。而具体怎么实现下面将简单的介绍一下。

调用的基础-请求方法

一般而言,常见的HTTP请求调用方式有很多,这方面的资源比较多,可以网上自己查阅,这里就简单说说常见的两种请求方法。

GET 请求

GET请求简单来说就是从服务器上获取资源,可以载入到浏览器的缓存中。

POST 请求

POST请求一般而言以表单形式向服务器发送请求,请求参数包含在请求体当中可能导致资源的创建和改变。POST请求的信息不能缓存在浏览器中。
这两个请求方法说起来很简单,但最重要的一点就是了解这两种请求的区别,从而为接口的设计和API的使用更加熟悉。

GET和POST请求的区别

GET请求请求长度最多1024kb,POST对请求数据没有限制。这一点原因是很多时候GET请求把对应的信息放在URL中,而URL的长度有限,导致GET请求的长度也受到一定的限制。而POST请求相应的参数信息放在请求体body中所以一般不受长度限制。
2.POST请求比GET更安全一些,因为GET请求中URL包含了相应的信息,页面会被浏览器缓存,其他人可以看到相应的信息。
3.GET产生一个TCP数据包,POST产生两个TCP数据包。
GET请求的时候将header、data一起发送出去,然后服务器响应返回200。而POST则是先发送header,等待服务器响应100,然后发送data,最后服务器响应返回200.但在这里注意,POST请求分为两次,但是请求体body是紧随在header之后发送的,所以这之间时间可以微乎不计。
4.GET请求只支持URL编码,而POST相对而言有多种编码方式。
5.GET请求参数是通过URL传递的,多个参数以&连接,POST请求放在request body中。
6.GET请求只支持ASCII字符,而POST没有限制。
一般而言浏览器输入网址可以直接访问的一般是GET请求。

Python实现GET请求和POST请求

上面大篇幅的介绍了一些数据接口、API相关知识以及请求方法,使用起来比较简单,下面可以大致熟悉一下相应的请求方式。一般直接使用Python的request库就可以。

GET请求
import request# GET请求发送的参数一定要是字典的形式,可以发送多个参数。# 发送格式:{'key1':value1', 'key2':'value2', 'key3', 'value3'}# 样例不能运行url ='http://www.xxxxx.com'params = {'user':'lixue','password':111112333}requests.get(url,data = parms)
POST请求

POST请求一般有三种提交形式:application/x-www-form-urlencoded、multipart/form-data、application/json.
具体查看是三种的哪一种请求方式:谷歌浏览器检查 → Network →选择加载文件 → Headers → Reuqest Headers → Content-Type
具体编码方式为下面三种,可以了解具体的请求实现,一般公司内部的数据接口设置了局域网所以有的可以不需要加header。

POST请求的三种提交形式

最常见的post提交数据以form表单为主:application/x-www-form-urlencoded

import requestdata={'k1':'v1','k2':'v2'}headers= {'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36'}requests.post(url,headers = headers,data=data)

以json格式提交数据:application/json

data = {'user':'lixue','password':12233}data_json = json.dumps(params)requests.post(url,headers = headers,data = data_json)

一般用来传文件(爬虫很少用到):multipart/form-data

files = {'files':open('c://xxx.txt','rb')}requests.post(url = url,headers = headers,files = files)
一个简单API请求的实例

通过上面简单的介绍,对于具体请求大致了解,这里搜集了一个简单的API聚合中心,提供了很多挺好用的功能。下面以这个简单API的作一个简单的示范API地址。
这个小实例采取的是天气API接口获取近15天的天气。在使用这个API之前记得获取相应的apiKey和查看具体的使用文档。这个API网站一般对相应API提供一定的免费次数,可以充当学习使用,而且支持GET和POST请求。刚好可以适合练手。

GET请求
params = {    "apiKey":'换成你的apikey',    "area":'武汉市',}url = 'https://api.apishop.net/common/weather/get15DaysWeatherByArea'response = requests.get(url,params)print(response.text)
POST请求

这里的POST请求也就是对应上面的最常见的post提交数据以form表单为主:application/x-www-form-urlencoded

url = 'https://api.apishop.net/common/weather/get15DaysWeatherByArea'params = {    "apiKey":'换成你的apikey',    "area":'武汉市武昌区',}response = requests.post(url,params)print(response.text)

在调用这种API接口一般都需要进行一个状态码等返回信息测试,检查请求是否正常,可以按照下面的给出参考。

params = {    "apiKey":'换成你的apikey,    "area":'武汉市',}url = 'https://api.apishop.net/common/weather/get15DaysWeatherByArea'response = requests.post(url,params)print(response.text)if response.status_code != 200:    raise ConnectionError(f'{url} status code is {response.status_code}.')response = json.loads(response.content)if 'desc' not in response.keys():    raise ValueError(f'{url} miss key msg.')if response['desc'] != '请求成功':    print(11)
数据提取

其实API的调用很简单,但其中最核心的其实是返回信息中数据的抽取,一般而言返回的信息都是json形式,需要从中用字典键值对方式提取数据,下面这块根据请求的数据返回相应的信息并提取出来,获取信息后面将会展示。

import requestsimport pandas as pd import numpy as npimport jsondef get_url(area):    url = 'https://api.apishop.net/common/weather/get15DaysWeatherByArea'    params = {        "apiKey":'换成你的apikey',        "area":area,    }    response = requests.get(url,params)    if response.status_code != 200:        raise ConnectionError(f'{url} status code is {response.status_code}.')    response = json.loads(response.content)    if 'desc' not in response.keys():        raise ValueError(f'{url} miss key msg.')    if response['desc'] != '请求成功':        print(11)    return responsedef  extract_data(web_data):    data= web_data['result']['dayList']    weather_data = pd.DataFrame(columns = ['city','daytime','day_weather','day_air_temperature','day_wind_direction','day_wind_power',                                           'night_weather','night_air_temperature','night_wind_direction','night_wind_power'])    for i in range(len(data)):        city = data[i]["area"]        daytime = data[i]["daytime"]        daytime = daytime[:4]+'-'+daytime[4:6]+'-'+daytime[-2:]        day_weather = data[i]["day_weather"]        day_air_temperature = data[i]['day_air_temperature']        day_wind_direction = data[i]["day_wind_direction"]        day_wind_power = data[i]['day_wind_power']        night_weather = data[i]['night_weather']        night_air_temperature = data[i]["night_air_temperature"]        night_wind_direction = data[i]['night_wind_direction']        night_wind_power = data[i]["night_wind_power"]        c = {"city": city,"daytime": daytime,"day_weather":day_weather,"day_air_temperature":day_air_temperature,             "day_wind_direction":day_wind_direction,"day_wind_power":day_wind_power,"night_weather":night_weather,             "night_air_temperature":night_air_temperature,"night_wind_direction":night_wind_direction,             "night_wind_power":night_wind_power}        weather_data = weather_data.append(c,ignore_index = True)    weather_data.to_excel(r"C:\Users\zhangfeng\Desktop\最近十五天天气.xlsx",index = None)    return weather_dataif __name__ == '__main__':    print("请输入对应的城市")    web_data = get_url(input())    weather_data = extract_data(web_data)

部分结果如下图:
python中API如何调用

数据接口实例

在日常学习中数据接口的使用可能相对较少,数据接口的应用场景大多数情况下是应用在公司内部调取数据的情况下比较多,所以一般很少见到,这里展示工作中遇到的两个数据接口的使用,由于工作考虑,展示的代码属于样例,并不能调用。可以参考一下调用实现以及规范。

POST请求调用数据接口
# 销售状态查询def id_status(id_dir):    id_data = pd.read_excel(id_dir,sheet_name="Sheet1")     id_data.columns = ['shop', 'Campaign Name','Ad Group Name','Item Id']  # 方便后期处理更改列名    id_data["Item Id"] = id_data["Item Id"].astype(str)    id_list = list(id_data['Item Id'])    print(len(id_list))    id_list = ','.join(id_list)    if isinstance(id_list, int):        id_list = str(id_list)    id1 = id_list.strip().replace(',', ',').replace(' ', '')    request_url = "http://xxx.com"    # 通过item_id查询id状态    params = {        "item_id":id1,    }    data_json = json.dumps(params) # 属于POST第二种请求方式    response = requests.post(request_url, data = data_json)    print(response.text)    if response.status_code != 200:        raise ConnectionError(f'{request_url} status code is {response.status_code}.')    response = json.loads(response.content)    if 'message' not in response.keys():        raise ValueError(f'{request_url} miss key msg.')    if response['message'] != 'ok':        print(11)    data= response['result']    ad_data = pd.DataFrame(columns = ['Item Id','saleStatusName'])    for j in range(len(data)):        item_id =data[j]["item_id"]        saleStatusName = data[j]['saleStatusName']        c = {"Item Id": item_id,         "saleStatusName": saleStatusName,         }        ad_data = ad_data.append(c,ignore_index = True)    total_data = pd.merge(ad_data,id_data,on ='Item Id', how ='left')    df_column =  ['shop', 'Campaign Name','Ad Group Name','Item Id','saleStatusName']    total_data = total_data.reindex(columns=df_column)    return total_data
GET请求调用数据接口
### 库存数据查询def Smart_investment_treasure(investment_dir):    product_data = pd.read_excel(investment_dir,sheet_name="product")    if len(product_data)>0:        product_data['商品ID']=product_data['商品ID'].astype(str)        product_list=list(product_data['商品ID'])        product_id = ','.join(product_list)    else:        product_id='没有数据'     return product_id    def stock_query(investment_dir):        product_data = pd.read_excel(investment_dir,sheet_name="product")    if len(product_data)>0:        product_data['商品ID']=product_data['商品ID'].astype(str)        product_list=list(product_data['商品ID'])        product_id = ','.join(product_list)    else:        product_id='没有数据'     if isinstance(product_id, int):        product_id = str(id)    product_id = product_id.strip().replace(',', ',').replace(' ', '')    request_url = "http://xxx.com"    # 通过ali_sku查询erpsku    params = {        "product_id":product_id,    }        response = requests.get(request_url, params) #属于GET请求    if response.status_code != 200:        raise ConnectionError(f'{request_url} status code is {response.status_code}.')    response = json.loads(response.content)    if 'msg' not in response.keys():        raise ValueError(f'{request_url} miss key msg.')    if response['msg'] != 'success':        print(11)    data= response['data']['data']    # requestProductId = id.split(',')    id_state=[]    overseas_stock=[]    china_stock=[]    id_list=[]    for j in range(len(data)):        inventory_data= data[j]['list']        overseas_inventory=0        ep_sku_list=[]        sea_test=0        china_inventory=0        test="paused"        id_test=""        id_test=data[j]['product_id']        for i in range(len(inventory_data)):            if inventory_data[i]["simple_code"] in ["FR","DE","PL","CZ","RU"] and inventory_data[i]["erp_sku"] not in ep_sku_list:                overseas_inventory+=inventory_data[i]["ipm_sku_stock"]                ep_sku_list.append(inventory_data[i]["erp_sku"])                sea_test=1            elif inventory_data[i]["simple_code"] == 'CN':                china_inventory+=int(inventory_data[i]["ipm_sku_stock"])        if overseas_inventory>30:            test="open"        elif overseas_inventory==0 and china_inventory>100:            test="open"        id_list.append(id_test)        overseas_stock.append(overseas_inventory)        china_stock.append(china_inventory)                   id_state.append(test)    c={"id":id_list,       "id_state":id_state,       "海外仓库存":overseas_stock,       "国内大仓":china_stock       }    ad_data=pd.DataFrame(c)    return ad_data

几种常见API调用实例

百度AI相关API

百度API是市面上面比较成熟的API服务,在大二期间由于需要使用一些文本打标签和图像标注工作了解了百度API,避免了重复造轮子,当时百度API的使用比较复杂,参考文档很多不规范,之前也写过类似的百度API调用极其不稳定,但最近查阅了百度API参考文档,发现目前的调用非常简单。
通过安装百度开发的API第三方包,直接利用Python调包传参即可使用非常简单。这里展示一个具体使用,相应安装第三方库官方文档查阅。

'''第三方包名称:baidu-aip 百度API """ 你的 APPID AK SK """APP_ID = '你的 App ID'API_KEY = '你的 Api Key'SECRET_KEY = '你的 Secret Key'参考文档:https://ai.baidu.com/ai-doc/NLP/tk6z52b9z'''from aip import AipNlpAPP_ID = 'xxxxxx'API_KEY = '换成你的apikey'SECRET_KEY = '换成你的SECRET_KEY'client = AipNlp(APP_ID, API_KEY, SECRET_KEY)text = "我还没饭吃"# 调用文本纠错 client.ecnet(text)

python中API如何调用

百度地图API

这个API当时为了设计一个推荐体系引入经纬度换算地址,这样为数据计算带来极大的方便,而且对于一般人来说文本地址相比经纬度信息更加直观,然后结合Python一个第三方包实现两个地址之间经纬度计算得出相对的距离。

# https://lbsyun.baidu.com/# 计算校验SN(百度API文档说明需要此步骤)import pandas as pdimport numpy as npimport warningsimport requestsimport urllibimport hashlibimport jsonfrom geopy.distance import geodesiclocation = input("输入所在的位置\n")  # "广州市天河区"ak = "ak1111" # 参照自己的应用sk = "sk111111" # 参照自己的应用url = "http://api.map.baidu.com"query = "/geocoding/v3/?address={0}&output=json&ak={1}&callback=showLocation".format(location, ak)encodedStr = urllib.parse.quote(query, safe="/:=&?#+!$,;'@()*[]")sn = hashlib.md5(urllib.parse.quote_plus(encodedStr + sk).encode()).hexdigest()# 使用requests获取返回的jsonresponse = requests.get("{0}{1}&sn={2}".format(url, query, sn))data1=response.text.replace("showLocation&&showLocation(","").replace(")","")data = json.loads(data1)print(data)lat = data["result"]["location"]["lat"]lon = data["result"]["location"]["lng"]print("纬度: ", lat, " 经度: ", lon)distance=geodesic((lat,lon), (39.98028,116.30495))print("距离{0}这个位置大概{1}".format(location, distance))

python中API如何调用

有道API

在网上查阅了很多API,前面介绍的几种API,他们携带的请求参数信息相对比较简单,调用实现和基础请求没啥区别,这里找了一个相对而言比较多的请求参数的API,相对而言这种API数据付费API,它的安全性以及具体的实现都相对复杂,但是更适合商用。下面可以简单看看。

import requestsimport timeimport hashlibimport uuidyoudao_url = 'https://openapi.youdao.com/api'   # 有道api地址translate_text = "how are you!"input_text = ""# 当文本长度小于等于20时,取文本if(len(translate_text) <= 20):    input_text = translate_text    # 当文本长度大于20时,进行特殊处理elif(len(translate_text) > 20):    input_text = translate_text[:10] + str(len(translate_text)) + translate_text[-10:]uu_id = uuid.uuid1()now_time = int(time.time())app_id = '1111111'app_key = '11111111111'sign = hashlib.sha256((app_id + input_text + str(uu_id) + str(now_time) + app_key).encode('utf-8')).hexdigest()   # sign生成data = {    'q':translate_text,   # 翻译文本    'from':"en",   # 源语言    'to':"zh-CHS",   # 翻译语言    'appKey':app_id,   # 应用id    'salt':uu_id,   # 随机生产的uuid码    'sign':sign,   # 签名    'signType':"v3",   # 签名类型,固定值    'curtime':now_time,   # 秒级时间戳}r = requests.get(youdao_url, params = data).json()   # 获取返回的json()内容print("翻译后的结果:" + r["translation"][0])   # 获取翻译内容

翻译后的结果:你好!
这个API调用中引用了几个真正商用中的一些为了安全性等设置的验证信息,比如uuid、sign、timestamp,这几个在API调用中也是老生常谈的几个概念,是比较全面的。下面简单介绍一下。

uuid

uuid码:UUID是一个128比特的数值,这个数值可以通过一定的算法计算出来。为了提高效率,常用的UUID可缩短至16位。UUID用来识别属性类型,在所有空间和时间上被视为唯一的标识。一般来说,可以保证这个值是真正唯一的任何地方产生的任意一个UUID都不会有相同的值。使用UUID的一个好处是可以为新的服务创建新的标识符。是一种独特的唯一标识符,python 第三方库uuid 提供对应的uuid生成方式,有以下的几种 uuid1(),uuid3(),uuid4(),uuid5()上面采用的是uuid1()生成,还可以使用uuid4()生成。

sign

sign:一般为了防止被恶意抓包,通过数字签名等保证API接口的安全性。为了防止发送的信息被串改,发送方通过将一些字段要素按一定的规则排序后,在转化成密钥,通过加密机制发送,当接收方接受到请求后需要验证该信息是否被篡改过,也需要将对应的字段按照同样的规则生成验签sign,然后在于后台接收到的进行比对,可以发现信息是否被串改过。在上面的例子利用hashlib.sha256()来进行随机产生一段密钥,最后使用.hexdigest()返回最终的密钥。
curtime:引入一个时间戳参数,保证接口仅在一分钟内有效,需要和客户端时间保持一致。避免重复访问。

读到这里,这篇“python中API如何调用”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python中API如何调用

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python中API如何调用

本文小编为大家详细介绍“python中API如何调用”,内容详细,步骤清晰,细节处理妥当,希望这篇“python中API如何调用”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。APIAPI:简单来说就是一组协议、一
2023-07-02

Python中如何调用API

在Python中调用API的一种常见方式是使用`requests`库。以下是一个简单的示例,演示如何通过GET请求调用一个API并获取响应数据:```pythonimport requests# 定义API的URLapi_url = "ht
2023-08-28

python如何调用api接口

要调用 API 接口,可以使用 Python 中的 requests 库。以下是一个简单的示例:```pythonimport requests# API 请求的 URLurl = 'https://api.example.com/endp
2023-09-07

如何调用API

小编给大家分享一下如何调用API,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!给大家分享一个微信域名封杀检测api,平时用微信打开一些公司的网址,结果发现被停止访
2023-06-04

Python如何调用API发送邮件

这篇文章将为大家详细讲解有关Python如何调用API发送邮件,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。Python 调用 APIPython 调用 API 非常简单,通常需要一个称为 request
2023-06-14

C#如何调用API

这篇文章主要介绍C#如何调用API,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!我们有时需要遍历某个目录下的文件和子目录,可以使用System.IO.DirectoryInfo.GetDirectories或GetF
2023-06-17

如何调用Web API

本篇内容介绍了“如何调用Web API”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!第一步:打开开发者工具,找一个 JSON 响应我浏览了
2023-06-29

python调用api接口教程(Python调用ChatGPT-3.5-API)

要在Python中调用ChatGPT-3.5-API,您需要使用Python的请求库和json库来发送HTTP请求和处理返回的JSON响应。以下是一个简单的教程来帮助您开始使用ChatGPT-3.5-API:1. 导入必要的库:```pyt
2023-09-22

怎么在python中调用api

本篇文章给大家分享的是有关怎么在python中调用api,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。python可以做什么Python是一种编程语言,内置了许多有效的工具,P
2023-06-14

Python 调用cobbler API

目前BootAPI 已经不再推荐在cobbler 2.0中使用,官方推荐使用使用XMLRPC 注:要正常使用API,需要确保cobbler服务器apache和cobbler正常运行连接cobblerimport xmlrpclibserve
2023-01-31

python调用java API

使用JPype来让python调用java API。JPype的下载地址:https://pypi.python.org/pypi/JPype1 JPype的帮助文档:http://jpype.readthedocs.io/en/lates
2023-01-31

python如何调用api接口获取数据

在Python中,可以使用`requests`库来调用API接口获取数据。下面是一个简单的例子:```pythonimport requestsurl = "https://api.example.com/data" # 替换为实际的AP
2023-08-25

python怎么调用api

这篇文章主要讲解了“python怎么调用api”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“python怎么调用api”吧!本文教程操作环境:windows7系统、Python 3.9.1,
2023-06-30

c#如何调用API中的copymemory()函数

在C#中调用API中的CopyMemory()函数,可以使用DllImport特性来声明API函数,并使用Marshal类中的相关方法来处理内存复制操作。以下是一个示例代码:using System;using System.Runt
c#如何调用API中的copymemory()函数
2024-02-29

python中如何调用ansys

这篇文章主要介绍了python中如何调用ansys问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-02-17

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录