我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python人工智能遗传算法示例解析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python人工智能遗传算法示例解析

一、实验目的

熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解流程并测试主要参数对结果的影响。

二、实验原理

遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程。它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体。这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和个体组成的群体。后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程,群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解。

三、实验条件

Python3,Anaconda3,PyCharm

四、实验内容

import matplotlib.pyplot as plt
import random
import math
#计算函数
def f(args):
    return f2(args)
def f1(args):
    return (3 - (math.sin(2*args[0]))**2 - (math.sin(2*args[1]))**2)
def f2(args):
    x = 1
    for i in range(len(args)):
        z = 0
        for j in range(5):
            z += (j+1) * math.cos(((j+1)+1)*args[i]+(j+1))
        x *= z
    return x
#适应函数
def s(x):
    return s2(x)
def s1(x):
    return math.exp(-abs(x-1))
def s2(x):
    return math.exp(-abs(x+187))
# 计算2进制序列代表的数值
'''
解码并计算值
group 染色体
chrom_length 染色体长度
max_value, min_value 上下限
div 分界点
'''
def b2d(b, chrom_length, max_value, min_value, div):
    rwno = []
    #因为染色体里面有多个变量,所以需要div来分割
    for i in range(len(div)):
        if i == 0:
            star = 0
            end = div[i]
        else:
            star = div[i-1] + 1
            end = div[i]
        t = 0
        for j in range(star, end): # 分隔参数[1,2,3||4,5,6]
            t += b[j] * (math.pow(2, j - star))
        t = t * max_value / (math.pow(2, end - star + 1) - 1) - min_value
        rwno.append(t)
    return rwno # 这是一个list
'''
计算当前函数值
group 染色体
chrom_length 染色体长度
max_value,min_value 最大最小值
divid 分割
'''
def calobjValue(group, chrom_length, max_value, min_value, divid):
    obj_value = []
    for i in range(len(group)):      
        x = b2d(group[i], chrom_length, max_value, min_value, divid)#这里面可能是多个变量
        obj_value.append(f(x))
    return obj_value
# 获取适应值
def calfitValue(obj_value):
    fit_value = []
    for i in range(len(obj_value)):
        temp =  s(obj_value[i]) # 调用适应函数计算
        fit_value.append(temp)
    return fit_value
#累计适应值方便计算平均
def sum_fit(fit_value):
    total = 0
    for i in range(len(fit_value)):
        total += fit_value[i]
    return total
# 转轮盘选择法
def selection(group, fit_value):
    newfit_value = [] #[ [[染色体], [锚点]],... ]
    newgroup = [] #[ [父], [母], [父], [母],....]
    # 适应度总和
    total_fit = sum_fit(fit_value)
    # 设置各个的锚点
    t = 0
    for i in range(len(group)):
        t += fit_value[i]/total_fit
        newfit_value.append([group[i], t])
    # 转轮盘选择法
    for i in range(len(newfit_value)):
        parents = len(newfit_value) # 初始化指针
        r = random.random() #指针
        for j in range(len(newfit_value)):#看看指针指到睡了
            if newfit_value[j][1] > r:
                parents = j
                break
        newgroup.append(newfit_value[parents][0])
    return newgroup
# 交配
def crossover(group, fit_value, pc):
    parents_group = selection(group, fit_value) #[ [[父], [母]],....]
    group_len = len(parents_group)
    for i in range(0, group_len, 2):
        if(random.random() < pc): # 看看是否要交配
            cpoint = random.randint(0, len(parents_group[0])) # 随机交叉点
            temp1 = []
            temp2 = []
            temp1.extend(parents_group[i][0:cpoint])
            temp1.extend(parents_group[i+1][cpoint:len(parents_group[i])])
            temp2.extend(parents_group[i+1][0:cpoint])
            temp2.extend(parents_group[i][cpoint:len(parents_group[i])])
            group[i] = temp1
            group[i+1] = temp2
# 基因突变
def mutation(group, pm):
    px = len(group)
    py = len(group[0])
    for i in range(px): # 遍历
        if(random.random() < pm):
            mpoint = random.randint(0, py-1) # 取要变异哪个
            if(group[i][mpoint] == 1):
                group[i][mpoint] = 0
            else:
                group[i][mpoint] = 1
'''
找出最优解和最优解的基因编码
group 种群染色去
fit_value 种群适应
'''
def best(group, fit_value):
    px = len(group)
    best_in = group[0]
    best_fit = fit_value[0]
    for i in range(1, px):
        if(fit_value[i] > best_fit):
            best_fit = fit_value[i]
            best_in = group[i]
    #print(best_in)
    return [best_in, best_fit]
'''
创建初代种群
group_size 种群大小
chrom_length 染色体长度
'''
def getFisrtGroup(group_size, chrom_length):
    #print('初代种群:')
    group = []
    for i in range(group_size):
        temp = []
        for j in range(chrom_length):
            temp.append(random.randint(0, 1))
        group.append(temp)
    #print(group)
    return group
generation = 50  # 繁衍代数(数量越小,出结果脍,迭代次数越少)
group_size = 400     # 染色体数量,偶数
max_value = 20       # 范围
min_value = 10       # 偏移修正
chrom_length = 800   # 染色体长度
divid = [399, chrom_length-1]    # 输入值分界点, 最后一位必须是染色体长度
pc = 0.7            # 交配概率
pm = 0.1            # 变异概率
results = []        # 存储每一代的最优解
fit_value = []      # 个体适应度
points = [] #多个最优解
#生成初代
group = getFisrtGroup(group_size, chrom_length)
for i in range(generation):
    if i > 100:
        pm = 0.01
    if i > 1000:
        pm = 0.001
    obj_value = calobjValue(group, chrom_length, max_value, min_value, divid)   # 个体评价
    fit_value = calfitValue(obj_value)  # 获取群体适应值
    best_individual, best_fit = best(group, fit_value)  # 返回最优基因, 最优适应值
    xx = b2d(best_individual, chrom_length, max_value, min_value, divid)
    if( abs(f(xx)+186.730909) < 0.000001):#找到最优解
        flag = False
        for p in points:
            if( (abs(xx[0]-p[0]) < 0.1) and (abs(xx[1]-p[1]) < 0.1) ):#剔除重复解
                flag = True
                break
        if flag == False:
            print(xx)
            points.append(xx)
    results.append([i, best_fit, b2d(best_individual, chrom_length, max_value, min_value, divid), best_individual])  #加进坐标里
    crossover(group, fit_value, pc) # 交配
    mutation(group, pm) # 变异
#results.sort(key=lambda x:x[1])
rank = sorted(results, key=lambda x:x[1])
#print('\n', rank[-1])
#print(results)
x = b2d(rank[-1][3], chrom_length, max_value, min_value, divid)
#最终结果
print("f(x) = " , f(x) , "x = " , x , " 染色体 = ", rank[-1][3], "  适应值 = ", rank[-1][1], "代数:", rank[-1][0])
#输出适应图
X = []
Y = []
for i in range(generation):
    X.append(i)
    Y.append(results[i][1])
plt.plot(X, Y)
plt.show()

五、实验结果

以上就是python人工智能遗传算法示例解析的详细内容,更多关于python人工智能遗传算法的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python人工智能遗传算法示例解析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python人工智能算法之决策树流程示例详解

这篇文章主要为大家介绍了python人工智能算法之决策树流程示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-21

python人工智能算法之线性回归实例

这篇文章主要为大家介绍了python人工智能算法之线性回归实例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-21

如何用Python理解人工智能优化算法

这篇文章给大家介绍如何用Python理解人工智能优化算法,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。 概述梯度下降是神经网络中流行的优化算法之一。一般来说,我们想要找到最小化误差函数的权重和偏差。梯度下降算法迭代地更
2023-06-16

Python人工智能构建简单聊天机器人示例详解

这篇文章主要为大家介绍了Python人工智能构建简单聊天机器人示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-21

怎么用python实现人工智能算法

要使用Python实现人工智能算法,你可以按照以下步骤进行操作:1. 确定算法类型:首先,你需要确定你想要实现的人工智能算法类型,比如机器学习算法(如决策树、神经网络或支持向量机)、深度学习算法(如卷积神经网络或循环神经网络)或其他类型的算
2023-10-11

python人工智能算法之随机森林流程详解

这篇文章主要为大家介绍了python人工智能算法之随机森林流程详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-21

python人工智能算法之人工神经网络怎么使用

本篇内容介绍了“python人工智能算法之人工神经网络怎么使用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!人工神经网络(Artificia
2023-07-05

TensorFlow人工智能学习创建数据的示例分析

这篇文章将为大家详细讲解有关TensorFlow人工智能学习创建数据的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、数据创建1.tf.constant()创建自定义类型,自定义形状的数据,但不
2023-06-25

人工智能TextGeneration文本生成原理示例详解

这篇文章主要为大家介绍了TextGeneration文本生成原理示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-01-05

从零开始:Python人工智能库全面解析

从零开始:Python人工智能库全面解析导语:随着人工智能的迅速发展,Python作为一种灵活且易于学习的编程语言,成为了众多人工智能开发者的首选。Python拥有丰富的人工智能库,这些库提供了各种功能强大的工具和算法,帮助开发者实现各种复
从零开始:Python人工智能库全面解析
2023-12-23

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录