TensorFlow人工智能学习创建数据的示例分析
这篇文章将为大家详细讲解有关TensorFlow人工智能学习创建数据的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
一、数据创建
1.tf.constant()
创建自定义类型,自定义形状的数据,但不能创建类似于下面In [59]这样的,无法解释的数据。
2.tf.convert_to_tensor()
可以把numpy以及List类型的数据直接转换为tensor
3.tf.zeros()
和常用的方式一样,传入包含中括号的shape即可。
tf.zeros_like和pytorch功能一样,传入有某个shape的数据,会生成和那个shape一样的zeros数据。tf.ones, tf.ones_like和你想的一样。
4.tf.fill()
生成指定形状的,所有内容都一样的数据,前面shape,后面参数是填充的内容。
二、数据随机初始化
①tf.random.normal()
正态分布,传入形状,可指定均值方差。
②tf.random.truncated_normal()
裁剪过后的数据,裁去了前后分布太少的数据,只从中间数据多的地方取数据,同样可以指定均值方差。
③tf.random.uniform()
均匀分布初始化,形状,最小值,最大值
④tf.random.shuffle()
随机打散,可以打散一个索引顺序,通过tf.gather去对应,这样可以实现两个同样行数的数据,进行索引一一对应的随机打散。
关于“TensorFlow人工智能学习创建数据的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341