我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python实现动态规划算法的示例代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python实现动态规划算法的示例代码

动态规划(Dynamic Programming,DP)是一种常用的算法思想,通常用于解决具有重叠子问题和最优子结构性质的问题。动态规划算法通常是将问题分解为子问题,先解决子问题,再由子问题的解推导出原问题的解。

动态规划算法的基本步骤如下:

  • 确定状态:定义状态变量,表示问题的子问题和解。
  • 确定状态转移方程:描述子问题的解和原问题的解之间的关系。
  • 确定初始状态:状态转移方程需要用到的最小子问题的解。
  • 确定计算顺序:根据状态转移方程,确定子问题的计算顺序。
  • 计算问题的解:按照计算顺序,依次计算子问题的解,最终得到原问题的解。

下面以求解斐波那契数列为例,解释动态规划算法的应用。

斐波那契数列是一个递归定义的数列,第 n 项为前两项之和,即:

f(n) = f(n-1) + f(n-2), n >= 2

初始值为:

f(0) = 0, f(1) = 1

可以使用动态规划算法计算斐波那契数列,以下是一个使用动态规划算法的 Python 实现:

def fibonacci(n):
    if n <= 1:
        return n
    else:
        dp = [0] * (n+1)
        dp[0], dp[1] = 0, 1
        for i in range(2, n+1):
            dp[i] = dp[i-1] + dp[i-2]
        return dp[n]

这个实现中,我们定义了状态变量 dp,表示斐波那契数列的前 n 项。初始状态为 dp[0] = 0 和 dp[1] = 1。然后我们通过循环计算每一项的值,直到得到第 n 项的值。

使用动态规划算法计算斐波那契数列的时间复杂度为 O(n),因为我们需要计算前 n 项的值。使用动态规划算法,可以大大降低计算斐波那契数列的时间复杂度,避免重复计算。

可以直接调用 fibonacci 函数来计算斐波那契数列的第 n 项。例如,计算斐波那契数列的第 10 项,可以这样调用:

print(fibonacci(10))  # 输出 55

到此这篇关于python实现动态规划算法的示例代码的文章就介绍到这了,更多相关python 动态规划算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python实现动态规划算法的示例代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python实现动态规划算法的示例代码

本文主要介绍了python实现动态规划算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-02-16

Java算法之BFS,DFS,动态规划和贪心算法的实现

广度优先搜索(BFS)和深度优先搜索(DFS)是图遍历算法中最常见的两种算法,主要用于解决搜索和遍历问题。动态规划和贪心算法则用来解决优化问题。本文就来看看这些算法的具体实现吧
2023-05-14

Java动态规划之硬币找零问题实现示例

本文主要介绍了Java动态规划之硬币找零问题实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2022-11-13

PHP实现LRU算法的示例代码

本篇文章主要给大家介绍了PHP的相关知识,LRU是Least Recently Used 近期最少使用算法, 内存管理的一种页面置换算法,下面将详解LRU算法的原理以及实现,下面一起来看一下,希望对大家有帮助。(推荐教程:PHP视频教程)原理LRU是Least Recently Used 近期最少使用算法。 内存管理的一种页面置换算法,对于在内存中但又不用的数据块(内存块)叫做LRU,操作系统会根据
2022-08-08

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录