Python实现Matplotlib,Seaborn动态数据图的示例代码
短信预约 -IT技能 免费直播动态提醒
Matplotlib
效果图如下
主要使用matplotlib.animation.FuncAnimation
,上核心代码,
# 定义静态绘图函数
def draw_barchart(year):
dff = df[df['year'].eq(year)].sort_values(by='value',
ascending=True).tail(10)
ax.clear()
ax.barh(dff['name'],
dff['value'],
color=[colors[group_lk[x]] for x in dff['name']])
dx = dff['value'].max() / 200
for i, (value, name) in enumerate(zip(dff['value'], dff['name'])):
ax.text(value - dx,
i,
name,
size=14,
weight=600,
ha='right',
va='bottom')
ax.text(value - dx,
i - .25,
group_lk[name],
size=10,
color='#444444',
ha='right',
va='baseline')
ax.text(value + dx,
i,
f'{value:,.0f}',
size=14,
ha='left',
va='center')
# 注释文本
ax.text(1,
0.4,
year,
transform=ax.transAxes,
color='#777777',
size=46,
ha='right',
weight=800)
ax.text(0,
1.06,
'单位 (每1000)',
transform=ax.transAxes,
size=12,
color='#777777')
ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
ax.xaxis.set_ticks_position('top')
ax.tick_params(axis='x', colors='#777777', labelsize=12)
ax.set_yticks([])
ax.margins(0, 0.01)
ax.grid(which='major', axis='x', linestyle='-')
ax.set_axisbelow(True)
ax.text(0,
1.12,
'1500~2018年世界人口最多城市',
transform=ax.transAxes,
size=24,
weight=600,
ha='left')
plt.box(False)
# 调用matplotlib.animation.FuncAnimation让静态图动起来
animator = animation.FuncAnimation(fig,
draw_barchart,
frames=range(1968, 2019))
# Jupyter Notebook里展示动图animation
HTML(animator.to_jshtml())
在绘图数据部分改自己的数据既可为所欲为的使用了~
Seaborn
效果图如下
代码
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import seaborn as sns
import numpy as np
import palettable
def get_data(i=0):
x, y = np.random.normal(loc=i, scale=3, size=(2, 260))
return x, y
x, y = get_data()
g = sns.JointGrid(x=x, y=y, size=4)
g.fig.set_size_inches(10, 8)
lim = (-10, 10)
def prep_axes(g, xlim, ylim):
g.ax_joint.clear()
g.ax_joint.set_xlim(xlim)
g.ax_joint.set_ylim(ylim)
g.ax_marg_x.clear()
g.ax_marg_x.set_xlim(xlim)
g.ax_marg_y.clear()
g.ax_marg_y.set_ylim(ylim)
plt.setp(g.ax_marg_x.get_xticklabels(), visible=False)
plt.setp(g.ax_marg_y.get_yticklabels(), visible=False)
plt.setp(g.ax_marg_x.yaxis.get_majorticklines(), visible=False)
plt.setp(g.ax_marg_x.yaxis.get_minorticklines(), visible=False)
plt.setp(g.ax_marg_y.xaxis.get_majorticklines(), visible=False)
plt.setp(g.ax_marg_y.xaxis.get_minorticklines(), visible=False)
plt.setp(g.ax_marg_x.get_yticklabels(), visible=False)
plt.setp(g.ax_marg_y.get_xticklabels(), visible=False)
def animate(i):
g.x, g.y = get_data(i)
prep_axes(g, lim, lim)
g.plot_joint(sns.kdeplot,
cmap='Paired')
g.plot_marginals(sns.kdeplot, color='blue', shade=True)
frames = np.sin(np.linspace(0, 2 * np.pi, 17)) * 5
ani = matplotlib.animation.FuncAnimation(g.fig,
animate,
frames=frames,
repeat=True)
HTML(ani.to_jshtml())
和Matplotlib代码类似,不过多解释。
到此这篇关于Python实现Matplotlib,Seaborn动态数据图的示例代码的文章就介绍到这了,更多相关Python动态数据图内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341