我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python使用gensim计算文档相似性

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python使用gensim计算文档相似性

pre_file.py


#-*-coding:utf-8-*-
import MySQLdb
import MySQLdb as mdb
import os,sys,string
import jieba
import codecs
reload(sys)
sys.setdefaultencoding('utf-8')
#连接数据库
try:
  conn=mdb.connect(host='127.0.0.1',user='root',passwd='kongjunli',db='test1',charset='utf8')
except Exception,e:
  print e
  sys.exit()
#获取cursor对象操作数据库
cursor=conn.cursor(mdb.cursors.DictCursor) #cursor游标
#获取内容
sql='SELECT link,content FROM test1.spider;'
cursor.execute(sql)   #execute()方法,将字符串当命令执行
data=cursor.fetchall()#fetchall()接收全部返回结果行
f=codecs.open('C:UserskkDesktophello-result1.txt','w','utf-8')
 
for row in data:    #row接收结果行的每行数据
  seg='/'.join(list(jieba.cut(row['content'],cut_all='False')))
  f.write(row['link']+' '+seg+'rn')
f.close()
 
cursor.close()
      #提交事务,在插入数据时必须

jiansuo.py


#-*-coding:utf-8-*-
import sys
import string
import MySQLdb
import MySQLdb as mdb
import gensim
from gensim import corpora,models,similarities
from gensim.similarities import MatrixSimilarity
import logging
import codecs
reload(sys)
sys.setdefaultencoding('utf-8')
 
con=mdb.connect(host='127.0.0.1',user='root',passwd='kongjunli',db='test1',charset='utf8')
with con:
  cur=con.cursor()
  cur.execute('SELECT * FROM cutresult_copy')
  rows=cur.fetchall()
  class MyCorpus(object):
    def __iter__(self):
      for row in rows:
        yield str(row[1]).split('/')
#开启日志
logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s',level=logging.INFO)
Corp=MyCorpus()
#将网页文档转化为tf-idf
dictionary=corpora.Dictionary(Corp)
corpus=[dictionary.doc2bow(text) for text in Corp] #将文档转化为词袋模型
#print corpus
tfidf=models.TfidfModel(corpus)#使用tf-idf模型得出文档的tf-idf模型
corpus_tfidf=tfidf[corpus]#计算得出tf-idf值
#for doc in corpus_tfidf:
  #print doc
###
'''
q_file=open('C:UserskkDesktopq.txt','r')
query=q_file.readline()
q_file.close()
vec_bow=dictionary.doc2bow(query.split(' '))#将请求转化为词带模型
vec_tfidf=tfidf[vec_bow]#计算出请求的tf-idf值
#for t in vec_tfidf:
 # print t
'''
###
query=raw_input('Enter your query:')
vec_bow=dictionary.doc2bow(query.split())
vec_tfidf=tfidf[vec_bow]
index=similarities.MatrixSimilarity(corpus_tfidf)
sims=index[vec_tfidf]
similarity=list(sims)
print sorted(similarity,reverse=True)

encodings.xml


<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
 <component name="Encoding">
  <file url="PROJECT" charset="UTF-8" />
 </component>
</project>

misc.xml


<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
 <component name="ProjectLevelVcsManager" settingsEditedManually="false">
  <OptionsSetting value="true" id="Add" />
  <OptionsSetting value="true" id="Remove" />
  <OptionsSetting value="true" id="Checkout" />
  <OptionsSetting value="true" id="Update" />
  <OptionsSetting value="true" id="Status" />
  <OptionsSetting value="true" id="Edit" />
  <ConfirmationsSetting value="0" id="Add" />
  <ConfirmationsSetting value="0" id="Remove" />
 </component>
 <component name="ProjectRootManager" version="2" project-jdk-name="Python 2.7.11 (C:Python27python.exe)" project-jdk-type="Python SDK" />
</project>

modules.xml


<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
 <component name="ProjectModuleManager">
  <modules>
   <module fileurl="file://$PROJECT_DIR$/.idea/爬虫练习代码.iml" filepath="$PROJECT_DIR$/.idea/爬虫练习代码.iml" />
  </modules>
 </component>
</project>

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python使用gensim计算文档相似性

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python使用gensim计算文档相似性

pre_file.py#-*-coding:utf-8-*- import MySQLdb import MySQLdb as mdb import os,sys,string import jieba import codecs relo
2022-06-04

Python文本相似性计算之编辑距离详解

编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的
2022-06-04

怎么查重python文本相似性计算simhash源码

今天小编给大家分享一下怎么查重python文本相似性计算simhash源码的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。场景
2023-06-29

Python如何实现距离和相似性计算

本篇内容主要讲解“Python如何实现距离和相似性计算”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python如何实现距离和相似性计算”吧!欧氏距离也称欧几里得距离,是指在m维空间中两个点之间
2023-07-05

Python机器学习中实现距离和相似性计算详解

这篇文章主要为大家详细介绍了Python机器学习中实现距离和相似性计算的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
2023-03-08

使用python如何删除同一文件夹下相似的图片

前言 最近整理图片发现,好多图片都非常相似,于是写如下代码去删除,有两种方法: 注:第一种方法只对于连续图片(例一个视频里截下的图片)准确率也较高,其效率高;第二种方法准确率高,但效率低 方法一:相邻两个文件比较相似度,相似就把第二个加到新
2022-06-02

怎么使用python删除同一文件夹下相似的图片

小编给大家分享一下怎么使用python删除同一文件夹下相似的图片,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!python有哪些常用库python常用的库:1.r
2023-06-14

Python怎么使用tf-idf算法计算文档关键字权重并生成词云

本文小编为大家详细介绍“Python怎么使用tf-idf算法计算文档关键字权重并生成词云”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python怎么使用tf-idf算法计算文档关键字权重并生成词云”文章能帮助大家解决疑惑,下面跟着小编的
2023-07-05

Python使用tf-idf算法计算文档关键字权重并生成词云的方法

这篇文章主要介绍了Python使用tf-idf算法计算文档关键字权重,并生成词云,本文通过实例代码给大家介绍的非常想详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-03-19

使用python cgi上传文件并计算m

对文件拷贝后进行MD5值比较,看是不是拷贝完全。google和baidu上都是使用md5模块读取所有的文件进内存,在计算md5,导致计算超过1G大小的文件报错。增量计算MD5的方法:#!/usr/bin/pythonimport hashl
2023-01-31

计算机中要想观察一个长文档的总体结构应当使用哪种方式

这篇文章主要为大家展示了“计算机中要想观察一个长文档的总体结构应当使用哪种方式”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“计算机中要想观察一个长文档的总体结构应当使用哪种方式”这篇文章吧。要想
2023-06-20

在arcgis使用python脚本进行字段计算时是如何解决中文问题的

一、引言在arcgis打开一个图层的属性表,可以对属性表的某个字段进行计算,但是在平常一般都是使用arcgis提供的字段计算器的界面进行傻瓜式的简答的赋值操作,并没有使用到脚本对字段值进行逻辑的操作。由于最近一直在学python脚本,刚好又
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录