我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python机器学习中实现距离和相似性计算详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python机器学习中实现距离和相似性计算详解

欧氏距离

也称欧几里得距离,是指在m维空间中两个点之间的真实距离。欧式距离在ML中使用的范围比较广,也比较通用,就比如说利用k-Means对二维平面内的数据点进行聚类,对魔都房价的聚类分析(price/m^2 与平均房价)等。

两个n维向量a

(x11​,x12​.....x1n​)

与 b

(x21​,x22​.....x2n​)

间的欧氏距离

python 实现为:

def EuclideanDistance(x, y):
    import numpy as np
    x = np.array(x)
    y = np.array(y)
    return np.sqrt(np.sum(np.square(x-y)))

这里传入的参数可以是任意维的,该公式也适应上边的二维和三维

曼哈顿距离

python 实现为:

def ManhattanDistance(x, y):
    import numpy as np
    x = np.array(x)
    y = np.array(y)
    return np.sum(np.abs(x-y))

切比雪夫距离

切比雪夫距离(Chebyshev Distance)的定义为:max( | x2-x1 | , |y2-y1 | , … ), 切比雪夫距离用的时候数据的维度必须是三个以上

python 实现为:

def ChebyshevDistance(x, y):
    import numpy as np
    x = np.array(x)
    y = np.array(y)
    return np.max(np.abs(x-y))

马氏距离

有M个样本向量X1~Xm,协方差矩阵记为S,均值记为向量μ,则其中样本向量X到u的马氏距离表示为

python实现:

def MahalanobisDistance(x, y):
    '''
    马氏居立中的(x,y)与欧几里得距离的(x,y)不同,欧几里得距离中的(x,y)指2个样本,每个样本的维数为x或y的维数;这里的(x,y)指向量是2维的,样本个数为x或y的维数,若要计算n维变量间的马氏距离则需要改变输入的参数如(x,y,z)为3维变量。
    '''
    import numpy as np
    x = np.array(x)
    y = np.array(y)
    
    X = np.vstack([x,y])
    X_T = X.T
    sigma = np.cov(X)
    sigma_inverse = np.linalg.inv(sigma)
    
    d1=[]
    for i in range(0, X_T.shape[0]):
        for j in range(i+1, X_T.shape[0]):
            delta = X_T[i] - X_T[j]
            d = np.sqrt(np.dot(np.dot(delta,sigma_inverse),delta.T))
            d1.append(d)
        
    return d1

夹角余弦

def moreCos(a,b):
    sum_fenzi = 0.0
    sum_fenmu_1,sum_fenmu_2 = 0,0
    for i in range(len(a)):
        sum_fenzi += a[i]*b[i]
        sum_fenmu_1 += a[i]**2 
        sum_fenmu_2 += b[i]**2 

    return sum_fenzi/( sqrt(sum_fenmu_1) * sqrt(sum_fenmu_2) )

闵可夫斯基距离

当p=1时,就是曼哈顿距离

当p=2时,就是欧氏距离

当p→∞时,就是切比雪夫距离

python实现:

def MinkowskiDistance(x, y, p):
    import math
    import numpy as np
    zipped_coordinate = zip(x, y)
    return math.pow(np.sum([math.pow(np.abs(i[0]-i[1]), p) for i in zipped_coordinate]), 1/p)

汉明距离

两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数

def hanmingDis(a,b):
    sumnum = 0
    for i in range(len(a)):
        if a[i]!=b[i]:
            sumnum += 1
    return sumnum

杰卡德距离 & 杰卡德相似系数

杰卡德距离,杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

def jiekadeDis(a,b):
    set_a = set(a)
    set_b = set(b)
    dis = float(len( (set_a | set_b) - (set_a & set_b) ) )/ len(set_a | set_b)
    return dis

杰卡德相似系数

两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

def jiekadeXSDis(a,b):
    set_a = set(a)
    set_b = set(b)
    dis = float(len(set_a & set_b)  )/ len(set_a | set_b)
    return dis

相关系数 & 相关距离

相关系数

import math

def c_Pearson(x, y):

    x_mean, y_mean = sum(x)/len(x), sum(y)/len(y)
    cov =0.0
    x_pow = 0.0
    y_pow = 0.0
    for i in range(len(x)):
        cov += (x[i]-x_mean) *(y[i] - y_mean)
    for i in range(len(x)):
        x_pow += math.pow(x[i] - x_mean, 2)
    for i in range(len(x)):
        y_pow += math.pow(y[i] - y_mean, 2)
    sumBm = math.sqrt(x_pow * y_pow)
    p = cov / sumBm

    return p

信息熵

衡量分布的混乱程度或分散程度的一种度量.

import numpy as np

data=['a','b','c','a','a','b']
data1=np.array(data)
#计算信息熵的方法
def calc_ent(x):
    """
        calculate shanno ent of x
    """

    x_value_list = set([x[i] for i in range(x.shape[0])])
    ent = 0.0
    for x_value in x_value_list:
        p = float(x[x == x_value].shape[0]) / x.shape[0]
        logp = np.log2(p)
        ent -= p * logp

    return ent

到此这篇关于Python机器学习中实现距离和相似性计算详解的文章就介绍到这了,更多相关Python距离 相似性计算内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python机器学习中实现距离和相似性计算详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python机器学习中实现距离和相似性计算详解

这篇文章主要为大家详细介绍了Python机器学习中实现距离和相似性计算的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
2023-03-08

Python如何实现距离和相似性计算

本篇内容主要讲解“Python如何实现距离和相似性计算”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python如何实现距离和相似性计算”吧!欧氏距离也称欧几里得距离,是指在m维空间中两个点之间
2023-07-05

Python文本相似性计算之编辑距离详解

编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录