我的编程空间,编程开发者的网络收藏夹
学习永远不晚

R语言:排序的应用操作

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

R语言:排序的应用操作

工作中遇到过许多看起来挺复杂的数据筛选,本质上都可以用排序解决,这里以R自带的mtcar数据集为例做一个记录。

首先简单介绍一下mtcar数据集,mtcar(Motor Trend Car Road Tests)是一个32行11列的数据集,记录了32种汽车的11种性能,具体数据如下:


> mtcars
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

假如我们想挑一款比较省油的车,也就是选一款mpg(每加仑公里数)较高的车。如果只要一个备选,自然可以使用which.max函数:


> mtcars[which.max(mtcars$mpg), ]
                mpg cyl disp hp drat    wt qsec vs am gear carb
Toyota Corolla 33.9   4 71.1 65 4.22 1.835 19.9  1  1    4    1
      

如果想要多个备选呢?例如2个备选。我们可以将mtcars按mpg从大到小排序,然后列出前两个:


> db_use <- mtcars[order(mtcars$mpg, decreasing = T), ] 
> db_use
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
        

前两名是:


> db_use[1:2, ]
                mpg cyl disp hp drat    wt  qsec vs am gear carb
Toyota Corolla 33.9   4 71.1 65 4.22 1.835 19.90  1  1    4    1
Fiat 128       32.4   4 78.7 66 4.08 2.200 19.47  1  1    4    1

如果取前3名呢?我们注意到存在并列第3的情况,所以说直接取前3行就不合适了。这样我们可以新设一列表示mpg的排名(rank),然后取排名小于等于3的数据。但是rank函数是从小到大排序的,我们这里要从大到小排序,需要做一个简单的变换:


> db_use$rank <- nrow(db_use) - rank(db_use$mpg, ties.method = 'max') + 1
> db_use
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb rank
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1    1
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1    2
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2    3
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2    3
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1    5
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2    6
        

选取前3名:


> db_use[which(db_use$rank<= 3), ]
                mpg cyl disp  hp drat    wt  qsec vs am gear carb rank
Toyota Corolla 33.9   4 71.1  65 4.22 1.835 19.90  1  1    4    1    1
Fiat 128       32.4   4 78.7  66 4.08 2.200 19.47  1  1    4    1    2
Honda Civic    30.4   4 75.7  52 4.93 1.615 18.52  1  1    4    2    3
Lotus Europa   30.4   4 95.1 113 3.77 1.513 16.90  1  1    5    2    3
        

下面增加一下难度。现在我们挑选出来的车都是4缸的,即cyl(气缸数)为4。我们想在不同气缸数的车中都挑一些省油的车做备选,比方说在不同气缸数的车中挑出各自前3款最省油的车。

同样,我们需要构造一个新变量表示mpg的排名,只不过这个排名是一个分组排名,即以气缸数分组,在气缸数相同的车中分别排名。

首先,我们将数据按气缸数分组排好:


> library(dplyr)
> db_use <- mtcars
> db_use$name <- rownames(db_use)
> db_use <- arrange(db_use, cyl, desc(mpg))
> db_use
    mpg cyl  disp  hp drat    wt  qsec vs am gear carb                name
1  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1      Toyota Corolla
2  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1            Fiat 128
3  30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2         Honda Civic
4  30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2        Lotus Europa
5  27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1           Fiat X1-9
6  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2       Porsche 914-2
        

然后列出各组的组内rank:


> rank_group <- aggregate(mpg~cyl, db_use, rank, ties.method = 'max')
> db_use$rank_increase <- unlist(rank_group$mpg)
> db_use
    mpg cyl  disp  hp drat    wt  qsec vs am gear carb                name rank_increase
1  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1      Toyota Corolla            11
2  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1            Fiat 128            10
3  30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2         Honda Civic             9
4  30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2        Lotus Europa             9
5  27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1           Fiat X1-9             7
6  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2       Porsche 914-2             6
     

接着,算出每组各包含多少数据:


> num_all <- aggregate(mpg~cyl, db_use, length)
> db_use$num_all <- rep(num_all$mpg, num_all$mpg)
> db_use
    mpg cyl  disp  hp drat    wt  qsec vs am gear carb                name rank_increase num_all
1  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1      Toyota Corolla            11      11
2  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1            Fiat 128            10      11
3  30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2         Honda Civic             9      11
4  30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2        Lotus Europa             9      11
5  27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1           Fiat X1-9             7      11
6  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2       Porsche 914-2             6      11
        

最后二者相减得出各组的组内从大到小排名,选取排名小于等于3的汽车::


> db_use$rank_decrease <- db_use$num_all - db_use$rank_increase + 1
> db_use[which(db_use$rank_decrease <= 3), ]
    mpg cyl  disp  hp drat    wt  qsec vs am gear carb              name rank_increase num_all rank_decrease
1  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1    Toyota Corolla            11      11             1
2  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1          Fiat 128            10      11             2
3  30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2       Honda Civic             9      11             3
4  30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2      Lotus Europa             9      11             3
12 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1    Hornet 4 Drive             7       7             1
13 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4         Mazda RX4             6       7             2
14 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4     Mazda RX4 Wag             6       7             2
19 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2  Pontiac Firebird            14      14             1
20 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 Hornet Sportabout            13      14             2
21 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3        Merc 450SL            12      14             3
        

有时候我们不会挑选具体前3名还是前5名的数据,会是取一个百分比,比方说在各组内挑选前20%最省油的车辆,这个需求利用前边的几个中间变量新设一个百分比变量就能轻松实现:


> db_use[which(db_use$Percent <= 0.2), ]
    mpg cyl  disp  hp drat    wt  qsec vs am gear carb              name rank_increase num_all rank_decrease    Percent
1  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1    Toyota Corolla            11      11             1 0.09090909
2  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1          Fiat 128            10      11             2 0.18181818
12 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1    Hornet 4 Drive             7       7             1 0.14285714
19 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2  Pontiac Firebird            14      14             1 0.07142857
20 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 Hornet Sportabout            13      14             2 0.14285714
 

补充:R语言中的排序算法

最近用R语言比较多,所以这次再一次整理一下R语言中的排序算法,本篇文章主要以代码实现为主,原理不在此赘述了。

文中如有不正确的地方,欢迎大家批评指正。

1.测试数据


<span style="font-size:18px;"># 测试数组
vector = c(5,34,65,36,67,3,6,43,69,59,25,785,10,11,14)
vector
##  [1]   5  34  65  36  67   3   6  43  69  59  25 785  10  11  14</span>

2.R语言中自带的排序函数

在R中,跟排序有关的函数主要有三个:sort(),rank(),order()。其中sort(x)是对向量x进行排序,rank()是求秩的函数,它的返回值是这个向量中对应元素的“排名”,order()的返回值是对应“排名”的元素所在向量中的位置。


sort(vector)
##  [1]   3   5   6  10  11  14  25  34  36  43  59  65  67  69 785
order(vector)
##  [1]  6  1  7 13 14 15 11  2  4  8 10  3  5  9 12
rank(vector)
##  [1]  2  8 12  9 13  1  3 10 14 11  7 15  4  5  6

3.冒泡排序


# bubble sort
bubbleSort = function(vector) {
  n = length(vector)
  for (i in 1:(n-1)) {
    for (j in (i+1):n) {
      if(vector[i]>=vector[j]){
        temp = vector[i]
        vector[i] = vector[j]
        vector[j] = temp
        }
      }
    }
  return(vector)
}
bubbleSort(vector)
##  [1]   3   5   6  10  11  14  25  34  36  43  59  65  67  69 785

4.快速排序


# quick sort
quickSort = function(vector, small, big) {
  left = small
  right = big
  if (left >= right) {
    return(vector)
  }else{
    markValue = vector[left]
    while (left < right) {
      while (left < right && vector[right] >= markValue) {
        right = right - 1
      }
      vector[left] = vector[right]
      while (left < right && vector[left] <= markValue) {
        left = left + 1
      }
      vector[right] = vector[left]
    }
  vector[left] = markValue
  vector = quickSort(vector, small, left - 1)
  vector = quickSort(vector, right + 1, big)
  return(vector)
  }
}
quickSort(vector,1,15)
##  [1]   3   5   6  10  11  14  25  34  36  43  59  65  67  69 785

5.插入排序


# insert sort
insertSort = function(vector){
  n = length(vector)
  for(i in 2:n){
    markValue = vector[i]
    j=i-1
    while(j>0){
      if(vector[j]>markValue){
        vector[j+1] = vector[j]
        vector[j] = markValue
      }
      j=j-1
    }
  }
  return(vector)
}
insertSort(vector)
##  [1]   3   5   6  10  11  14  25  34  36  43  59  65  67  69 785

6.希尔排序


# shell sort
shellSort = function(vector){
   n = length(vector)
   separate = floor(n/2)
   while(separate>0){
     for(i in 1:separate){
       j = i+separate
       while(j<=n){
         m= j- separate
         markVlaue = vector[j]
         while(m>0){
           if(vector[m]>markVlaue){
             vector[m+separate] = vector[m]
             vector[m] = markVlaue
           }
           m = m-separate
         }
         j = j+separate
       }
     }
     separate = floor(separate/2)
   }
   return(vector)
}
shellSort(vector)
##  [1]   3   5   6  10  11  14  25  34  36  43  59  65  67  69 785

7.选择排序


# select sort
selectSort = function(vector){
  n = length(vector)
  for(i in 1:(n-1)){
    minIndex = i
    for(j in (i+1):n){
      if(vector[minIndex]>vector[j]){
        minIndex = j
      }
    }
    temp = vector[i]
    vector[i] = vector[minIndex]
    vector[minIndex] = temp
  }
  return(vector)
}
selectSort(vector)
##  [1]   3   5   6  10  11  14  25  34  36  43  59  65  67  69 785

8.堆排序


# heap sort
adjustHeap = function(vector,k,n){
  left = 2*k
  right = 2*k+1
  max = k
  if(k<=n/2){
    if(left<=n&&vector[left]>=vector[max]){
      max = left
    }
    if(right<=n&&vector[right]>=vector[max]){
      max = right
    }
    if(max!=k){
      temp = vector[k]
      vector[k] = vector[max]
      vector[max] = temp
      vector = adjustHeap(vector,max,n)
    }
  }
  return(vector)
}
createHeap = function(vector,n){
  for(i in (n/2):1){
    vector = adjustHeap(vector,i,n)
  }
  return(vector)
}
heapSort = function(vector){
  n = length(vector)
  vector = createHeap(vector,n)
  for(i in 1:n){
    temp = vector[n-i+1]
    vector[n-i+1] = vector[1]
    vector[1] = temp
    vector = adjustHeap(vector,1,n-i)
  }
  return(vector)
}

9.归并排序


# merge sort
combine = function(leftSet,rightSet){
  m = 1
  n = 1
  vectorTemp = c()
  while (m<=length(leftSet)&&n<=length(rightSet)) {
    if(leftSet[m]<=rightSet[n]){
      vectorTemp = append(vectorTemp,leftSet[m])
      m = m+1
    }else{
      vectorTemp = append(vectorTemp,rightSet[n])
      n = n+1
    }
  }
  if(m>length(leftSet)&&n==length(rightSet)){
    vectorTemp = append(vectorTemp,rightSet[n:length(rightSet)])
  }else if(m==length(leftSet)&&n>length(rightSet)){
    vectorTemp = append(vectorTemp,leftSet[m:length(leftSet)])
  }
  return(vectorTemp)
}
mergeSort = function(vector){
  size = length(vector)
  if(size==1){
    return(vector)
  }
    cut = ceiling(size/2)
    leftSet = mergeSort(vector[1:cut])
    rightSet = mergeSort(vector[(cut+1):size])
    vector = combine(leftSet,rightSet)
    return(vector)
}

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。如有错误或未考虑完全的地方,望不吝赐教。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

R语言:排序的应用操作

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

R语言的Dataframe常用操作方法

这篇文章主要讲解了“R语言的Dataframe常用操作方法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“R语言的Dataframe常用操作方法”吧!上节我们简单介绍了Dataframe的定义
2023-06-20

R语言如何实现柱状图排序和x轴上的标签倾斜操作

这篇文章将为大家详细讲解有关R语言如何实现柱状图排序和x轴上的标签倾斜操作,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。R语言做柱状图大致有两种方法, 一种是基础库里面的 barplot函数, 另一个就是
2023-06-14

R语言操作文件的方法什么

这篇文章主要介绍“R语言操作文件的方法什么”,在日常操作中,相信很多人在R语言操作文件的方法什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”R语言操作文件的方法什么”的疑惑有所帮助!接下来,请跟着小编一起来
2023-06-25

go语言堆排序的作用有哪些

Go语言堆排序的作用主要有以下几点:排序:堆排序是一种高效的排序算法,能够对一个无序的数组进行排序。它具有时间复杂度为O(nlogn)的特点,适用于大规模数据的排序。选择最大/最小元素:堆排序可以在O(1)的时间复杂度内找到最大或最小的元素
2023-10-27

r语言向量降序排列的方法是什么

R语言中可以使用`sort()`函数将向量进行升序排列,如果需要降序排列,可以使用`sort()`函数的参数`decreasing = TRUE`。以下是示例代码:```R# 创建一个向量vec # 将向量降序排列sorted_vec #
2023-09-11

C语言快速排序如何应用

今天小编给大家分享一下C语言快速排序如何应用的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。快速排序快速排序,说白了就是给基准
2023-06-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录