我的编程空间,编程开发者的网络收藏夹
学习永远不晚

R语言 检验多重共线性的操作

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

R语言 检验多重共线性的操作

函数kappa()


df<-data.frame()
df_cor=cor(df)
kappa(df_cor, exact=T) 

当 κ<100κ<100 , 说明共线性程度小;

当 100<κ<1000100<κ<1000 , 有较强的多重共线性;

当 κ>1000κ>1000,存在严重的多重共线性。

函数qr()


x<-matrix()
qr(x)$rank

qr(X)$rank 计算X矩阵的秩,如果不是满秩的,说明其中有xixi可以用其他xjxj的线性组合表示;此时可以进行逐步回归,用step()命令。


fm<-lm()
step(fm)

补充:多重共线性的产生原因、判别、检验、解决方法

最近做回归分析,出现了相关系数与回归方程系数符号相反的问题,经过研究,确认是多重共线性问题并探索了解决方法。

在此将多重共线性的相关知识整理如下。

解释变量理论上的高度相关与观测值高度相关没有必然关系,有可能两个解释变量理论上高度相关,但观测值未必高度相关,反之亦然。所以多重共线性本质上是数据问题。

造成多重共线性的原因有一下几种:

1、解释变量都享有共同的时间趋势;

2、一个解释变量是另一个的滞后,二者往往遵循一个趋势;

3、由于数据收集的基础不够宽,某些解释变量可能会一起变动;

4、某些解释变量间存在某种近似的线性关系;

判别:

1、发现系数估计值的符号不对;

2、某些重要的解释变量t值低,而R方不低

3、当一不太重要的解释变量被删除后,回归结果显著变化;

检验:

1、相关性分析,相关系数高于0.8,表明存在多重共线性;但相关系数低,并不能表示不存在多重共线性;

2、vif检验;

3、条件系数检验;

解决方法:

1、增加数据;

2、对模型施加某些约束条件;

3、删除一个或几个共线变量;

4、将模型适当变形;

5、主成分回归

处理多重共线性的原则:

1、 多重共线性是普遍存在的,轻微的多重共线性问题可不采取措施;

2、 严重的多重共线性问题,一般可根据经验或通过分析回归结果发现。如影响系数符号,重要的解释变量t值很低。要根据不同情况采取必要措施。

3、 如果模型仅用于预测,则只要拟合程度好,可不处理多重共线性问题,存在多重共线性的模型用于预测时,往往不影响预测结果;

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。如有错误或未考虑完全的地方,望不吝赐教。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

R语言 检验多重共线性的操作

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

R语言如何实现检验多重共线性的操作

小编给大家分享一下R语言如何实现检验多重共线性的操作,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!函数kappa()df<-data.frame()df_cor=cor(df)kappa(df_cor, exact=T)当
2023-06-14

R语言绘图样式设置如何操作符号,线条,颜色,文本属性

这篇文章主要介绍“R语言绘图样式设置如何操作符号,线条,颜色,文本属性”,在日常操作中,相信很多人在R语言绘图样式设置如何操作符号,线条,颜色,文本属性问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”R语言绘图
2023-06-14

使用R语言与多元线性回归分析计算的示例

这篇文章主要为大家展示了“使用R语言与多元线性回归分析计算的示例”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“使用R语言与多元线性回归分析计算的示例”这篇文章吧。计算实例例 6.9 某大型牙膏制
2023-06-20

R语言怎么用均值替换、回归插补及多重插补进行插补的操作

小编给大家分享一下R语言怎么用均值替换、回归插补及多重插补进行插补的操作,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!用均值替换、回归插补及多重插补进行插补# 设
2023-06-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录