我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C语言数据结构系列队列篇

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C语言数据结构系列队列篇

一、队列(Queue)

0x00 队列的概念

? 概念:

① 队列只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表。

② 入队列,进行插入操作的一端称为 队尾。出队列,进行删除操作的一端称为 队头。

③ 队列中的元素遵循先进先出的原则,即 FIFO 原则(First In First Out)

0x01 队列的结构

? 结构:

二、队列的定义

0x00 链式队列


typedef int QueueDataType;   //队列类型
 
typedef struct QueueNode {
    struct QueueNode* next;  //指向下一个节点
    QueueDataType data;      //数据
} QueueNode;
 
typedef struct Queue {
    QueueNode* pHead;        //头指针
    QueueNode* pTail;        //尾指针
} Queue;

❓ 为什么不使用单链表?

? 单链表我们只定义了一个指针指向头,没有定义尾指针。因为定义尾指针解决不了问题,比如尾插尾删。所以我们没有必要定义一个结构体把他们封到一起。这里我们再定义一个头指针 head 一个尾指针 tail ,这两个指针才有意义。因为根据队列的性质,我们只会在队尾插,不会再队尾删。所以这个尾指针的价值就得到了完美的体现,实际中定义几个指针是看你的需求确定的。

0x02 接口函数

? 这是需要实现几个接口函数:


void QueueInit(Queue* pQ);                  //队列初始化
void QueueDestroy(Queue* pQ);               //销毁队列
bool QueueIsEmpty(Queue* pQ);               //判断队列是否为空
void QueuePush(Queue* pQ, QueueDataType x); //入队
void QueuePop(Queue* pQ);                   //出队
QueueDataType QueueFront(Queue* pQ);        //返回队头数据
QueueDataType QueueBack(Queue* pQ);         //返回队尾数据
int QueueSize(Queue* pQ);                   //求队列大小

三、队列的实现

0x00 队列初始化(QueueInit)

? Queue.h


#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>
 
typedef int QueueDataType;   //队列类型
 
typedef struct QueueNode {
    struct QueueNode* next;  //指向下一个节点
    QueueDataType data;      //数据
} QueueNode;
 
typedef struct Queue {
    QueueNode* pHead;        //头指针
    QueueNode* pTail;        //尾指针
} Queue;
 
void QueueInit(Queue* pQ);   //队列初始化

? Queue.c



void QueueInit(Queue* pQ) {
    assert(pQ);                          //防止传入的pQ为空
 
    pQ->pHead = pQ->pTail = NULL;        //将头尾指针置空
}

? 解析:首先使用断言防止传入的pQ为空。初始化只需要把头指针和尾指针都置成空即可。

0x01 销毁队列(QueueDestroy)



void QueueDestroy(Queue* pQ) {
    assert(pQ);                          //防止传入的pQ为空
 
    QueueNode* cur = pQ->pHead;          //创建遍历指针cur
    while(cur != NULL) {                 //cur不为空就进入循环
        QueueNode* curNext = cur->next;  //信标指针curNext,防止释放cur后找不到其下一个节点
        free(cur);                       //释放cur当前指向的节点
        cur = curNext;                   //移动指针cur
    }
    pQ->pHead = pQ->pTail = NULL;        //置空干掉野指针
}

? 解读:

① 首先断言防止传入的pQ为空。

② 销毁要把所有节点都释放掉,我们创建遍历指针 cur 遍历整个队列。既然要释放 cur 指向的节点,为了防止释放 cur 之后找不到其下一个节点导致无法移动,我们这里创建一个类似于信标性质的指针 curNext 来记录一下 cur 的下一个节点,之后再 free 掉 cur,这样就可以移动 cur 了。

③ 最后为了防止野指针,还需要把头指针和尾指针都置为空。

0x02 判断队列是否为空(HeapIsEmpty)

? Queue.h


bool QueueIsEmpty(Queue* pQ);               //判断队列是否为空

? 解读:布尔值,返回 true 或 false

? Queue.c



bool QueueIsEmpty(Queue* pQ) {
    assert(pQ);                          //防止传入的pQ为空
 
    return pQ->pHead == NULL;            //如果成立则为True,不成立则为False
}

? 解读:

① 首先断言防止传入的pQ为空。

② 判断队列是否为空,可以直接返回,巧妙地利用布尔类型的特性。如果 pQ->pHead == NULL 成立则为真,会返回 true;不成立则为假,会返回 false。

0x03 入队(QueuePush)

? Queue.h


void QueuePush(Queue* pQ, QueueDataType x); //入队

? Queue.c



void QueuePush(Queue* pQ, QueueDataType x) {
    assert(pQ);             //防止传入的pQ为空
 
    
    QueueNode* new_node = (QueueNode*)malloc(sizeof(QueueNode));
    
    if(new_node == NULL) {
        printf("malloc failed!\n");
        exit(-1);
    }
    
    new_node->data = x;     //待插入的数据
    new_node->next = NULL;  //默认为空
    
    
    if(pQ->pHead == NULL) {                //情况1: 队列为空
        pQ->pHead = pQ->pTail = new_node;  //       既当头又当尾
    } else {                               //情况2: 队列不为空
        pQ->pTail->next = new_node;        //       在现有尾的后一个节点放置new_node
        pQ->pTail = new_node;              //       更新pTail,使它指向新的尾
    }
}

? 解读:

① 首先断言防止传入的pQ为空。

② 我们首先要创建新节点。通过 malloc 动态内存开辟一块 QueueNode 大小的空间,都学到这里了大家想必都养成了检查 malloc 的好习惯了吧?。最后放置数据吗,将待插入的数据 x 交给 data,next 默认置空,和之前学链表一样,这里就不过多赘述了。

③ 新节点创建好后,我们可以开始写入队的操作了。首先要理解队列的性质:队尾入数据,队头出数据。这里既然是入队,就要在对尾后面进行插入。这里我们还要考虑到如果队列为空的情况,这时我们要把头指针和尾指针都交付给 new_node 。为了理清思路,我们可以画一个思路草图来帮助我们更好地理解:

有了这个图,我们就可以清楚地实现了:


if(pQ->pHead == NULL) {                //情况1: 队列为空
    pQ->pHead = pQ->pTail = new_node;  //       既当头又当尾
}
else {                                 //情况2: 队列不为空
    pQ->pTail->next = new_node;        //       在现有尾的后一个节点放置new_node
    pQ->pTail = new_node;              //       更新pTail,使它指向新的尾
}

当队列为空时,令头指针和尾指针都指向 new_node ,当队列不为空时,再尾部地下一个节点放置 new_node ,随后再更新尾指针让其指向新的尾(new_node 的位置)。

0x04 出队(QueuePop)

? Queue.h


void QueuePop(Queue* pQ);                   //出队

? Queue.c


 
void QueuePop(Queue* pQ) {
    assert(pQ);                            //防止传入的pQ为空
    assert(!QueueIsEmpty(pQ));             //防止队列为空
 
    
    QueueNode* headNext = pQ->pHead->next; //信标指针HeadNext
    free(pQ->pHead);
    pQ->pHead = headNext;                  //更新头
 
    
    if(pQ->pHead == NULL)                  //如果pHead为空
        pQ->pTail = NULL;                  //处理一下尾指针,将尾指针置空
}

? 解读:

① 首先断言防止传入的 pQ 为空,这里还要放置队列为空,如果队列为空还要求出队的话会出问题的,所以这里要断言一下 QueueIsEmpty 为假。

② 思路草图如下:

出数据需要释放,和销毁一样,这里使用一个类似于信标性质的指针来记录 pHead 的下一个节点,之后我们就可以大胆地释放 pHead 而不用担心找不到了。free 掉之后更新头即可,令头指针指向 headNext 即可。 

? 注意:这里还要考虑一个问题,如果队内都被删完了,pHead 往后走指向空,但是 pTail 仍然指向那块已经被 free 掉的空间。pTail 就是一个典型的野指针。

我们可以不用担心 pHead,因为后面没有数据他会自然指向 NULL,但是我们这里得关注 pTail !我们需要手动处理一下它:

如果 pHead 为空,我们就把 pTail 也置为空即可。


 if(pQ->pHead == NULL)                  //如果pHead为空
        pQ->pTail = NULL;               //处理一下尾指针,将尾指针置空

0x05 返回队头数据(QueueFront)

? Queue.h


QueueDataType QueueFront(Queue* pQ);        //返回队头数据

? Queue.c



QueueDataType QueueFront(Queue* pQ) {
    assert(pQ);                            //防止传入的pQ为空
    assert(!QueueIsEmpty(pQ));             //防止队列为空
 
    return pQ->pHead->data;
}  

? 解读:

① 首先断言防止传入的 pQ 为空,这里我们还是要断言一下 QueueIsEmpty 为假,因为如果队内没有数据,还返回个锤子数据呢。

② 这里直接返回头的数据即可,特别简单没有什么好讲的。

0x06 返回队尾数据(QueueBack)

? Queue.h


QueueDataType QueueBack(Queue* pQ);         //返回队尾数据

? Queue.c



QueueDataType QueueBack(Queue* pQ) {
    assert(pQ);                            //防止传入的pQ为空
    assert(!QueueIsEmpty(pQ));             //防止队列为空
 
    return pQ->pTail->data;
}

? 解读:

① 首先断言防止传入的 pQ 为空,断言一下 QueueIsEmpty 为假。

② 这里直接返回队尾的数据即可。

0x07 求队列大小(QueueSize)

? Queue.h


int QueueSize(Queue* pQ);                   //求队列大小

? Queue.c



int QueueSize(Queue* pQ) {
    assert(pQ);             //防止传入的pQ为空
 
    int count = 0;          //计数器           
    QueueNode* cur = pQ->pHead;    //创建遍历指针cur
    while(cur != NULL) {
        ++count;            //计数+1
        cur = cur->next;    //移动指针cur
    }
    return count;
}

? 解读:这里我们采用计数器法来求大小即可,调用一次就是 O(N) ,也没什么不好的。

① 首先断言防止传入的 pQ 为空。

② 创建计数器变量和遍历指针 cur,遍历整个队列并计数,最后返回计数的结果即可。

0x08 完整代码

? Queue.h


#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>
 
typedef int QueueDataType;   //队列类型
 
typedef struct QueueNode {
    struct QueueNode* next;  //指向下一个节点
    QueueDataType data;      //数据
} QueueNode;
 
typedef struct Queue {
    QueueNode* pHead;        //头指针
    QueueNode* pTail;        //尾指针
} Queue;
 
void QueueInit(Queue* pQ);                  //队列初始化
void QueueDestroy(Queue* pQ);               //销毁队列
bool QueueIsEmpty(Queue* pQ);               //判断队列是否为空
void QueuePush(Queue* pQ, QueueDataType x); //入队
void QueuePop(Queue* pQ);                   //出队
QueueDataType QueueFront(Queue* pQ);        //返回队头数据
QueueDataType QueueBack(Queue* pQ);         //返回队尾数据
int QueueSize(Queue* pQ);                   //求队列大小

? Queue.c


#include <Queue.h>
 

void QueueInit(Queue* pQ) {
    assert(pQ);                          //防止传入的pQ为空
 
    pQ->pHead = pQ->pTail = NULL;        //将头尾指针置空
}
 

void QueueDestroy(Queue* pQ) {
    assert(pQ);                          //防止传入的pQ为空
 
    QueueNode* cur = pQ->pHead;          //创建遍历指针cur
    while(cur != NULL) {                 //cur不为空就进入循环
        QueueNode* curNext = cur->next;  //信标指针curNext,防止释放cur后找不到其下一个节点
        free(cur);                       //释放cur当前指向的节点
        cur = curNext;                   //移动指针cur
    }
    pQ->pHead = pQ->pTail = NULL;        //置空干掉野指针
}
 

bool QueueIfEmpty(Queue* pQ) {
    assert(pQ);                          //防止传入的pQ为空
 
    return pQ->pHead == NULL;            //如果成立则为True,不成立则为False
}
 

void QueuePush(Queue* pQ, QueueDataType x) {
    assert(pQ);             //防止传入的pQ为空
 
    
    QueueNode* new_node = (QueueNode*)malloc(sizeof(QueueNode));
    
    if(new_node == NULL) {
        printf("malloc failed!\n");
        exit(-1);
    }
    
    new_node->data = x;     //待插入的数据
    new_node->next = NULL;  //默认为空
    
    
    if(pQ->pHead == NULL) {                //情况1: 队列为空
        pQ->pHead = pQ->pTail = new_node;  //       既当头又当尾
    } else {                               //情况2: 队列不为空
        pQ->pTail->next = new_node;        //       在现有尾的后一个节点放置new_node
        pQ->pTail = new_node;              //       更新pTail,使它指向新的尾
    }
}
 
 
void QueuePop(Queue* pQ) {
    assert(pQ);                            //防止传入的pQ为空
    assert(!QueueIsEmpty(pQ));             //防止队列为空
 
    
    QueueNode* headNext = pQ->pHead->next; //信标指针HeadNext,防止释放pHead后找不到其下一个节点
    free(pQ->pHead);
    pQ->pHead = headNext;                  //更新头
 
    
    if(pQ->pHead == NULL)                  //如果pHead为空
        pQ->pTail = NULL;                  //处理一下尾指针,将尾指针置空
}
 

QueueDataType QueueFront(Queue* pQ) {
    assert(pQ);                            //防止传入的pQ为空
    assert(!QueueIsEmpty(pQ));             //防止队列为空
 
    return pQ->pHead->data;
}   
 

QueueDataType QueueBack(Queue* pQ) {
    assert(pQ);                            //防止传入的pQ为空
    assert(!QueueIsEmpty(pQ));             //防止队列为空
 
    return pQ->pTail->data;
}
 

int QueueSize(Queue* pQ) {
    assert(pQ);             //防止传入的pQ为空
 
    int count = 0;          //计数器           
    QueueNode* cur = pQ->pHead;    //创建遍历指针cur
    while(cur != NULL) {
        ++count;            //计数+1
        cur = cur->next;    //移动指针cur
    }
    return count;
}

? Test.c


#include "Queue.h"
 
void TestQueue1() {
    Queue q;
    QueueInit(&q);
 
    QueuePush(&q, 1);
    QueuePush(&q, 2);
    QueuePush(&q, 3);
    QueuePush(&q, 4);
 
    QueuePop(&q);
    QueuePop(&q);
    QueuePop(&q);
    QueuePop(&q);
    //QueuePop(&q);
 
    QueueDestroy(&q);
}
 
void TestQueue2() {
    Queue q;
    QueueInit(&q);
 
    QueuePush(&q, 1);
    QueuePush(&q, 2);
    QueuePush(&q, 3);
    QueuePush(&q, 4);
 
    //假设先入了1 2,让1出来,再继续入,它的顺序还是不会变。
    // 永远保持先进先出的,无论是入了两个出两个,再入再出,还是全部入完了再出,都是不会变的。这就是队列的性质
    while(!QueueIsEmpty(&q)) {
        QueueDataType front = QueueFront(&q);
        printf("%d ", front);
        QueuePop(&q);  //pop掉去下一个
    }
    printf("\n");
 
    QueueDestroy(&q);
}
 
int main(void) {
    TestQueue2();
 
    return 0;
}

参考资料:

Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .

百度百科[EB/OL]. []. https://baike.baidu.com/.

? 笔者:王亦优

? 更新: 2021.11.17

❌ 勘误: 无

? 声明: 由于作者水平有限,本文有错误和不准确之处在所难免,本人也很想知道这些错误,恳望读者批评指正!

本篇完。

到此这篇关于C语言数据结构系列队列篇的文章就介绍到这了,更多相关C语言 队列内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C语言数据结构系列队列篇

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C语言数据结构之队列怎么定义与实现

今天小编给大家分享一下C语言数据结构之队列怎么定义与实现的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。一、队列的性质上次我们
2023-07-02

数据结构(三):队列

队列:先入先出(FIFO)表。常用操作:Enqueue:入队,即将数据写入队列末尾Dequeue:出队,即将队列开头的元素从队列中删除并返回应用场景:  队列通常用来实现消息(任务)的快速读写,即消息队列。消息队列的常用来解决如下问题:提升
2023-01-31

C语言数据结构与算法之队列的实现详解

队列只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(FirstInFirstOut)的原则。本文将通过实例详细说说队列的实现,需要的可以学习一下
2022-11-13

C语言数据结构之栈与队列怎么相互实现

本篇内容介绍了“C语言数据结构之栈与队列怎么相互实现”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、用对列实现栈题干要求:细节分析:队列是
2023-07-02

C#数据结构与队列怎么实现

这篇文章主要讲解了“C#数据结构与队列怎么实现”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C#数据结构与队列怎么实现”吧!C#数据结构与算法之队列是一种特殊的线性表,它只允许在表的前端(f
2023-06-18

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录