我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python中的矩阵运算

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python中的矩阵运算

转自:https://www.cnblogs.com/chamie/p/4870078.html

摘自:http://m.blog.csdn.net/blog/taxueguilai1992/46581861

python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。

1.numpy的导入和使用


from numpy import *;#导入numpy的库函数
import numpy as np; #这个方式使用numpy的函数时,需要以np.开头。

2.矩阵的创建

由一维或二维数据创建矩阵

复制代码


>>> from numpy import *
>>> a1=array([1,2,3])
>>> a1
array([1, 2, 3])
>>> a1=mat(a1)
>>> a1
matrix([[1, 2, 3]])
>>> shape(a1)
(1, 3)
>>> b=matrix([1,2,3])
>>> shape(b)
(1, 3)

复制代码

创建常见的矩阵

复制代码


>>>data1=mat(zeros((3,3))) #创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3)
>>> data1
matrix([[ 0.,  0.,  0.],
        [ 0.,  0.,  0.],
        [ 0.,  0.,  0.]])
>>>data2=mat(ones((2,4))) #创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int
>>> data2
matrix([[ 1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.]])
>>>data3=mat(random.rand(2,2)) #这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix
>>> data3
matrix([[ 0.57341802,  0.51016034],
        [ 0.56438599,  0.70515605]])
>>>data4=mat(random.randint(10,size=(3,3))) #生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数
>>> data4
matrix([[9, 5, 6],
        [3, 0, 4],
        [6, 0, 7]])
>>>data5=mat(random.randint(2,8,size=(2,5))) #产生一个2-8之间的随机整数矩阵
>>> data5
matrix([[5, 4, 6, 3, 7],
        [5, 3, 3, 4, 6]])
>>>data6=mat(eye(2,2,dtype=int)) #产生一个2*2的对角矩阵
>>> data6
matrix([[1, 0],
        [0, 1]])

a1=[1,2,3]
a2=mat(diag(a1)) #生成一个对角线为1、2、3的对角矩阵
>>> a2
matrix([[1, 0, 0],
        [0, 2, 0],
        [0, 0, 3]])

复制代码

3.常见的矩阵运算

1. 矩阵相乘


>>>a1=mat([1,2]);      
>>>a2=mat([[1],[2]]);
>>>a3=a1*a2 #1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵
>>> a3
matrix([[5]])

2. 矩阵点乘

矩阵对应元素相乘


>>>a1=mat([1,1]);
>>>a2=mat([2,2]);
>>>a3=multiply(a1,a2)
>>> a3
matrix([[2, 2]])

矩阵点乘


>>>a1=mat([2,2]);
>>>a2=a1*2>>>a2
matrix([[4, 4]])

3.矩阵求逆,转置 
矩阵求逆

复制代码


>>>a1=mat(eye(2,2)*0.5)
>>> a1
matrix([[ 0.5,  0. ],
        [ 0. ,  0.5]])
>>>a2=a1.I  #求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵
>>> a2
matrix([[ 2.,  0.],
        [ 0.,  2.]])

复制代码

矩阵转置

复制代码


>>> a1=mat([[1,1],[0,0]])
>>> a1
matrix([[1, 1],
        [0, 0]])
>>> a2=a1.T
>>> a2
matrix([[1, 0],
        [1, 0]])

复制代码

4.计算矩阵对应行列的最大、最小值、和。


3>>>a1=mat([[1,1],[2,3],[4,2]])
>>> a1
matrix([[1, 1],
        [2, 3],
        [4, 2]])

计算每一列、行的和

复制代码


>>>a2=a1.sum(axis=0) #列和,这里得到的是1*2的矩阵
>>> a2
matrix([[7, 6]])
>>>a3=a1.sum(axis=1) #行和,这里得到的是3*1的矩阵
>>> a3
matrix([[2],
        [5],
        [6]])
>>>a4=sum(a1[1,:])  #计算第一行所有列的和,这里得到的是一个数值
>>> a4
5                    #第0行:1+1;第2行:2+3;第3行:4+2

复制代码

计算最大、最小值和索引

复制代码


>>>a1.max()   #计算a1矩阵中所有元素的最大值,这里得到的结果是一个数值
4
>>>a2=max(a1[:,1]) #计算第二列的最大值,这里得到的是一个1*1的矩阵
>>> a2
matrix([[3]])
>>>a1[1,:].max()  #计算第二行的最大值,这里得到的是一个一个数值
3
>>>np.max(a1,0)  #计算所有列的最大值,这里使用的是numpy中的max函数
matrix([[4, 3]])
>>>np.max(a1,1)  #计算所有行的最大值,这里得到是一个矩阵
matrix([[1],
        [3],
        [4]])
>>>np.argmax(a1,0) #计算所有列的最大值对应在该列中的索引
matrix([[2, 1]])
>>>np.argmax(a1[1,:])  #计算第二行中最大值对应在该行的索引
1

复制代码

5.矩阵的分隔和合并 
矩阵的分隔,同列表和数组的分隔一致。

复制代码


>>>a=mat(ones((3,3)))
>>> a
matrix([[ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.]])
>>>b=a[1:,1:]  #分割出第二行以后的行和第二列以后的列的所有元素
>>> b
matrix([[ 1.,  1.],
        [ 1.,  1.]])

复制代码

矩阵的合并

复制代码


>>>a=mat(ones((2,2)))
>>> a
matrix([[ 1.,  1.],
        [ 1.,  1.]])
>>>b=mat(eye(2))
>>> b
matrix([[ 1.,  0.],
        [ 0.,  1.]])
>>>c=vstack((a,b))  #按列合并,即增加行数
>>> c
matrix([[ 1.,  1.],
        [ 1.,  1.],
        [ 1.,  0.],
        [ 0.,  1.]])
>>>d=hstack((a,b))  #按行合并,即行数不变,扩展列数
>>> d
matrix([[ 1.,  1.,  1.,  0.],
        [ 1.,  1.,  0.,  1.]])

复制代码

4.矩阵、列表、数组的转换

列表可以修改,并且列表中元素可以使不同类型的数据,如下:


l1=[[1],'hello',3];

numpy中数组,同一个数组中所有元素必须为同一个类型,有几个常见的属性:

复制代码


>>>a=array([[2],[1]])
>>> a
array([[2],
       [1]])
>>>dimension=a.ndim
>>> dimension
2
>>>m,n=a.shape
>>> m
2
>>> n
1
>>>number=a.size #元素总个数
>>> number
2
>>>str=a.dtype #元素的类型
>>> str
dtype('int64')

复制代码

numpy中的矩阵也有与数组常见的几个属性。 
它们之间的转换:

复制代码


>>>a1=[[1,2],[3,2],[5,2]]  #列表
>>> a1
[[1, 2], [3, 2], [5, 2]]
>>>a2=array(a1)  #将列表转换成二维数组
>>> a2
array([[1, 2],
       [3, 2],
       [5, 2]])
>>>a3=mat(a1)  #将列表转化成矩阵
>>> a3
matrix([[1, 2],
        [3, 2],
        [5, 2]])
>>>a4=array(a3)  #将矩阵转换成数组
>>> a4
array([[1, 2],
       [3, 2],
       [5, 2]])
>>>a41=a3.getA()  #将矩阵转换成数组
>>>a41
array([[1,2]
       [3,2]
       [5,2]])
>>>a5=a3.tolist()  #将矩阵转换成列表
>>> a5
[[1, 2], [3, 2], [5, 2]]
>>>a6=a2.tolist()  #将数组转换成列表
>>> a6
[[1, 2], [3, 2], [5, 2]]

复制代码

这里可以发现三者之间的转换是非常简单的,这里需要注意的是,当列表是一维的时候,将它转换成数组和矩阵后,再通过tolist()转换成列表是不相同的,需要做一些小小的修改。如下:

复制代码


>>>a1=[1,2,3]   #列表
>>>a2=array(a1)
>>> a2
array([1, 2, 3])
>>>a3=mat(a1)
>>> a3
matrix([[1, 2, 3]])
>>> a4=a2.tolist()
>>> a4
[1, 2, 3]
>>> a5=a3.tolist()
>>> a5
[[1, 2, 3]]
>>> a6=(a4==a5)
>>> a6
False
>>> a7=(a4 is a5[0])
>>> a7
True

复制代码

矩阵转换成数值,存在以下一种情况:


>>> dataMat=mat([1])
>>> val=dataMat[0,0]  #这个时候获取的就是矩阵的元素的数值,而不再是矩阵的类型
>>> val
1

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python中的矩阵运算

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python中的矩阵运算

转自:https://www.cnblogs.com/chamie/p/4870078.html摘自:http://m.blog.csdn.net/blog/taxueguilai1992/46581861python的numpy库提供矩阵
2023-01-31

Numpy中的矩阵运算

安装与使用大型矩阵运算主要用matlab或者sage等专业的数学工具,但我这里要讲讲python中numpy,用来做一些日常简单的矩阵运算!这是 numpy官方文档,英文不太熟悉的,还有 numpy中文文档numpy 同时支持 python
2023-01-31

python的常见矩阵运算

python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。1.numpy的导入和使用from numpy import *;#导入numpy的库函数import numpy as np; #这个方式
2023-01-31

常见矩阵运算Python

python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。1.numpy的导入和使用from numpy import *;#导入numpy的库函数import numpy as np; #这个方式
2023-01-31

关于python的矩阵乘法运算

这篇文章主要介绍了关于python的矩阵乘法运算,矩阵是一个数字阵列,一个二维数组,n行r列的阵列称为n*r矩阵。如果n==r则称为方阵,需要的朋友可以参考下
2023-05-17

怎么在python中实现矩阵乘法运算

今天就跟大家聊聊有关怎么在python中实现矩阵乘法运算,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。Python的优点有哪些1、简单易用,与C/C++、Java、C# 等传统语言相
2023-06-14

Python中shape计算矩阵的方法示例

本文实例讲述了Python中shape计算矩阵的方法。分享给大家供大家参考,具体如下: 看到机器学习算法时,注意到了shape计算矩阵的方法接下来就讲讲我的理解吧>>> from numpy import * >>> import oper
2022-06-04

python矩阵乘法怎么算

在 python 中,使用 numpy 库的 matmul() 函数对矩阵执行乘法:创建矩阵。使用 matmul() 函数进行矩阵乘法。Python中矩阵乘法的计算如何计算Python中矩阵的乘法?使用NumPy库的matmul()函数
python矩阵乘法怎么算
2024-05-22

Numpy库演示矩阵逆运算的例子

使用Numpy库进行矩阵逆的实例演示简介:在线性代数中,矩阵逆是一项非常重要的运算。通过求解矩阵的逆,我们可以解决一系列的数学问题,例如线性方程组的求解和最小二乘法等。本文将通过使用Numpy库,展示如何使用Python编程语言来计算矩阵
Numpy库演示矩阵逆运算的例子
2024-01-24

C++实现重载矩阵的部分运算符

这篇文章主要为大家详细介绍了如何利用C++实现重载矩阵的部分运算符,文中的示例代码讲解详细,对我们学习C++有一定帮助,需要的可以参考一下
2022-11-13

python的矩阵扩充

a为3*4的矩阵,b为2*4的矩阵,现要形成[ab]一样的矩阵,就需要扩充a 法一: import numpy as np a=np.row_stack( (a , b) )法二: c=np.zeros( (5 , 4)
2023-01-31

SymPy库关于矩阵的基本操作和运算

本文主要介绍了SymPy库关于矩阵的基本操作和运算,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-03-10

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录