我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python肯德尔系数相关性数据分析示例

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python肯德尔系数相关性数据分析示例

前言

相关性分析算是很多算法以及建模的基础知识之一了,十分经典。关于许多特征关联关系以及相关趋势都可以利用相关性分析计算表达。其中常见的相关性系数就有三种:person相关系数,spearman相关系数,Kendall's tau-b等级相关系数。各有各自的用法和使用场景。当然关于这以上三种相关系数的计算算法和原理+代码我都会在我专栏里面写齐全。目前关于数学建模的专栏已经将传统的机器学习预测算法、维度算法、时序预测算法和权重算法写的七七八八了,有这个需求兴趣的同学可以去看看。

一、定义

Kendall(肯德尔)系数的定义:n个同类的统计对象按特定属性排序,其他属性通常是乱序的。同序对(concordant pairs)和异序对(discordant pairs)之差与总对数(n*(n-1)/2)的比值定义为Kendall(肯德尔)系数。

与斯皮尔曼秩相关相似的是,肯德尔相关也是一种秩相关系数,是基于数据对象的秩(rank)来进行两个(随机变量)之间的相关关系(强弱和方向)的评估。所分析的目标对象应该是一种有序的类别变量,比如名次、年龄段、肥胖等级(重度肥胖,中度肥胖、轻度肥胖、不肥胖)等。

不同的是,斯皮尔曼相关是基于秩差(比如说,小明在班级中的历史成绩排名为10,英语成绩排名为4,那么在这个班级的学生的历史成绩和英语成绩的斯皮尔曼相关分析中,小明的成绩的贡献就是(10-4=6) )来进行相关关系的评估;而肯德尔相关则是基于样本数据对之间的关系来进行相关系数的强弱的分析,数据对可以分为一致对(Concordant)和分歧对(Discordant)。

kendall相关系数的计算公式如下:

假如我们设一组8人的身高和体重在那里A的人是最高的,第三重,等等:

注意,A最高,但体重排名为 3 ,比体重排名为 4,5,6,7,8 的重,贡献5个同序对,即AB,AE,AF,AG,AH。同理,我们发现B、C、D、E、F、G、H分别贡献4、5、4、3、1、0、0个同序对,因此,同序对数

P = 5 + 4 + 5 + 4 + 3 + 1 + 0 + 0 = 22.

异序对数 Q=28-22 (总对数减去同序对数为异序对数)

因而R=((22-6)/28)=0.57。这一结果显示出强大的排名之间的规律,符合预期。 我们看到,有一些相关的两个排名之间的相关性,可以使用肯德尔头系数,客观地衡量对应。

  • 如果两个排名之间的一致性是完美的(即两个排名相同),则系数的值为1。
  • 如果两个排名之间的分歧是完美的(即,一个排名与另一个排名相反),则系数具有值-1。
  • 如果X和Y是独立的,那么我们期望系数近似为零。

二、使用条件

在适用肯德尔相关分析前首先要检查数据是否满足以下基本假设,满足了这些基本假设才能确保你所得到的相关分析结果是有效的。

  • 变量数据是有序的( ordinal) 或者是连续的(continuous). 有序尺度(Ordinal scales )的数据通常用于用数值的方式来衡量非数值的概念,比如说,满意度,幸福度等等,还有像成绩排名啊、比赛名次啊之类的。而连续尺度的数据就勿需解释了,常见的温度啊、体重啊、收入啊等等都(或严格、或近似)算是连续尺度的数据。
  • 两个变量的数据之间应该遵循单调关系( monotonic relationship)。 简而言之就是,其中一个变量的值增大,另一个也增大,这个称为正相关;或者一个变量的值增大,另一个就变小,这个称为负相关。当然,这个单调关系是一个统计意义上的,或者说一种趋势上的,而非严格的单调。如下如所示。左图和中图都呈现一种近似单调的关系,而右图则不是,因为右图的左半部分和右半部分的趋势是相反的。

三、计算公式及代码示例

肯德尔系数有两个计算公式,一个称为Tau-c,另一个称为Tau-b。两者的区别是Tau-b可以处理有相同值的情况,即并列排位(tied ranks)。

1.Tau-a

from scipy.stats.stats import kendalltau
import numpy as np
import matplotlib.pyplot as plt
dat1 = np.array([1,2,3,4,5,6,7,8])
dat2 = np.array([3,4,1,2,5,7,8,6])
fig,ax = plt.subplots()
ax.scatter(dat1,dat2)
kendalltau(dat1,dat2)

2.Tau-b

在以上Tau-a的计算中假定原始数据中不存在并列排位。当原始数据中存在并列排位时,则用以下公式能够给出更准确的分析结果。

代码是一致的只不过使用数学运算不一致,具体我不展开了,更多关于python肯德尔系数相关性的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python肯德尔系数相关性数据分析示例

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python肯德尔系数相关性数据分析示例

这篇文章主要为大家介绍了python肯德尔系数相关性数据分析示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-02-15

python皮尔逊相关性数据分析分析及实例代码

这篇文章主要为大家介绍了python皮尔逊相关性分析及实例代码,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-02-15

用Python对数据进行相关性分析

这些维度关系的分析就需要用一些方法来进行衡量,相关性分析就是其中一种。本文就用python来解释一下数据的相关性分析。

如何用Python对数据进行相关性分析

这期内容当中小编将会给大家带来有关如何用Python对数据进行相关性分析,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。在进行数据分析时,我们所用到的数据往往都不是一维的,而这些数据在分析时难度就增加了不少
2023-06-16

Python数据分析Numpy中常用相关性函数是什么

今天小编给大家分享一下Python数据分析Numpy中常用相关性函数是什么的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。摘要
2023-06-30

盘点八个数据分析相关的Python库(实例+代码)

Python中常会用到一些专门的库,如NumPy、SciPy、Pandas和Matplotlib。

python跨库检查数据一致性的示例分析

python跨库检查数据一致性的示例分析,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。因为最近上线了samza实时流平台,实时从源数据端实时传输数据到数据仓库,于是就需要检
2023-06-03

thinkphp5.0修改器和数据完成关系的示例分析

小编给大家分享一下thinkphp5.0修改器和数据完成关系的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!密码加密时遇到的问题今天遇到密码md5加密的问
2023-06-14

Python进行数据相关性分析的三种方式是什么

本文小编为大家详细介绍“Python进行数据相关性分析的三种方式是什么”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python进行数据相关性分析的三种方式是什么”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。相
2023-06-30

ADO.NET开发数据库无关性应用程序的示例分析

这期内容当中小编将会给大家带来有关ADO.NET开发数据库无关性应用程序的示例分析,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。数据库无关性(DB Independ),指应用程序运行不依赖于某一数据库(如
2023-06-17

NumPy中的线性关系与数据修剪压缩实例分析

这篇文章主要介绍“NumPy中的线性关系与数据修剪压缩实例分析”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“NumPy中的线性关系与数据修剪压缩实例分析”文章能帮助大家解决问题。摘要总结股票均线计算
2023-06-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录