我的编程空间,编程开发者的网络收藏夹
学习永远不晚

如何使用Python实现对相同数据分箱

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

如何使用Python实现对相同数据分箱

小编给大家分享一下如何使用Python实现对相同数据分箱,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

什么是分箱?

简单点说就是将不同的东西,按照特定的条件放到一个指定容器里,比如水果 把绿色的放一个篮子里,红色一个篮子等等,这个篮子就是箱,而水果就是数据 颜色就是条件

什么样式的数据要进行分箱

数据主要分为连续变量和分类变量,分箱的操作主要针对于连续变量。

为什么要对数据进行分箱操作

稳定性,时间复杂度,看的舒服,提高准确度 等等

思路

先给定 last 为列表第一个(并存入temp列表),将后面的数据从第二个开始与 last 比较,如果相同存入 temp 中。

当不相同时,则将 last 切换为 不同的那个数(并存入temp),并将 temp列表 放入一个空列表中。

类型一:数字

实现效果

[1,1,1,2,2,2,3,3,4,4,5,5,5,5,5]# 转变为[[1, 1, 1], [2, 2, 2], [3, 3], [4, 4], [5, 5, 5, 5, 5]]

代码实现

box = [1,1,1,2,2,2,3,3,4,4,5,5,5,5,5]last = box[0]temp = [box[0]]box_list = [temp]for a in box[1::]:    if a == last:        temp.append(a)    else:        last = a        temp = [a]        box_list.append(temp)print(box_list) # [[1, 1, 1], [2, 2, 2], [3, 3], [4, 4], [5, 5, 5, 5, 5]]# 实现按每一个分箱列表遍历数据(而不用全部遍历)for boxs in box_list:    for i in boxs:        print(i)

类型二:元组

实现效果

box = [('小黑','20','四川'),('小黑','21','北京'),('张三','18','上海'),('张三','22','上海'),('张三','30','北京'),('李四','10','广州')]# 实现把名字相同的元组放入一个列表[[('小黑', '20', '四川'), ('小黑', '21', '北京')], [('张三', '18', '上海'), ('张三', '22', '上海'), ('张三', '30', '北京')], [('李四', '10', '广州')]]

代码实现

box = [('小黑','20','四川'),('小黑','21','北京'),('张三','18','上海'),('张三','22','上海'),('张三','30','北京'),('李四','10','广州')]last = box[0][0]temp = [box[0]]box_list = [temp]for a in box[1::]:    if a[0] == last:        temp.append(a)    else:        last = a[0]        temp = [a]        box_list.append(temp)       print(box_list)    # 实现按每一个分箱列表遍历数据(而不用全部遍历)for boxs in box_list:    for i in boxs:        print(i[0]) # 0取的姓名,1取年龄,3取地址

附:利用Python的cut方法可以对数据进行分箱。

import pandas as pd import numpy as np from pandas import Series,DataFrame# 随机生成一组数据score_list = np.random.randint(25,100,size = 20)  # 随机生成最小值25,最大值100的20个数据# 分箱的区间bins = [0,59,70,80,100]# 分箱score_cat = pd.cut(score_list,bins)# 统计不同区间的个数pd.value_counts(score_cat)# 生成一个空的DataFramedf = DataFrame()df['Score'] = score_listdf['Name'] =  [pd.util.testing.rands(5) for i in range(20)] # 生成20个姓名df['Categories'] =pd.cut(df['Score'],bins,labels = ['不及格','一般','优秀','厉害']) # labels对应的是bins的

以上是“如何使用Python实现对相同数据分箱”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注编程网行业资讯频道!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

如何使用Python实现对相同数据分箱

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何使用Python实现对相同数据分箱

小编给大家分享一下如何使用Python实现对相同数据分箱,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!什么是分箱?简单点说就是将不同的东西,按照特定的条件放到一个
2023-06-28

如何用Python对数据进行相关性分析

这期内容当中小编将会给大家带来有关如何用Python对数据进行相关性分析,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。在进行数据分析时,我们所用到的数据往往都不是一维的,而这些数据在分析时难度就增加了不少
2023-06-16

如何使用Redis实现分布式数据同步

如何使用Redis实现分布式数据同步随着互联网技术的发展和应用场景的日益复杂,分布式系统的概念越来越被广泛采用。在分布式系统中,数据同步是一个重要的问题。Redis作为一个高性能的内存数据库,不仅可以用来存储数据,还可以用来实现分布式数据同
如何使用Redis实现分布式数据同步
2023-11-07

python如何利用pd.cut()和pd.qcut()对数据进行分箱操作

这篇“python如何利用pd.cut()和pd.qcut()对数据进行分箱操作”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇
2023-07-02

python如何实现不同数据库间数据同步功能

这篇文章主要为大家展示了python如何实现不同数据库间数据同步功能,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带大家一起来研究并学习一下“python如何实现不同数据库间数据同步功能”这篇文章吧。python是什么意思P
2023-06-06

如何用Python分析相亲网站数据

这篇文章主要介绍“如何用Python分析相亲网站数据”,在日常操作中,相信很多人在如何用Python分析相亲网站数据问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”如何用Python分析相亲网站数据”的疑惑有所
2023-06-27

怎么使用Python对NetCDF数据做空间相关分析

这篇文章主要介绍了怎么使用Python对NetCDF数据做空间相关分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。python有哪些常用库python常用的库:1.requ
2023-06-14

如何使用Flink CDC实现 Oracle数据库数据同步

目录前言一、开启归档日志二、创建flinkcdc专属用户2.1 对于oracle 非CDB数据库,执行如下sql2.2 对于Oracle CDB数据库,执行如下sql三、指定oracle表、库级启用四、使用flink-connector-o
如何使用Flink CDC实现 Oracle数据库数据同步
2024-08-21

CSS如何使用relative属性实现相对定位

这篇文章主要介绍“CSS如何使用relative属性实现相对定位”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“CSS如何使用relative属性实现相对定位”文章能帮助大家解决问题。CSS rela
2023-07-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录