我的编程空间,编程开发者的网络收藏夹
学习永远不晚

数据分析MVP方法是什么?该怎么用?

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

数据分析MVP方法是什么?该怎么用?

数据分析的MVP是什么

MVP(Minimum Viable Product)原本是应用于产品设计的方法。指在正式推出产品前,先推出一个版包含核心功能的简单版本,测试用户需求与反馈,从而快速判断产品是否符合市场需求,做出调整。

数据分析的MVP方法,是在数据正式生产出来以前,先根据数据需求和使用场景,提供虚拟的数据结果,从而检验数据有效性,发现真正的数据需求。

这套方法在数据分析领域非常好使!因为它能解决数据分析的核心难题:做了半天,没有屁用。数据分析背后的《统计学》《数学》《运筹学》《博弈论》《机器学习》各种理论多了去了,因此极易引发自嗨。

做数据的自己嗨得不行,各种理论算的腾挪跌宕,到了用户那里:

  • “我早知道了!”
  • “你做的有啥用!”
  • “你做的咋落地!”

一键三连。这项目就必败无疑了。

数据分析的MVP方法,目的就是提前梳理清楚:数据如何对业务有用的逻辑,从而避免上述悲剧。而看似牛逼,实则然并卵的数据分析,在现实中多的很……

1.0版本MVP

举个简单例子,比如互联网平台-广告销售团队提出:“要建立业务员用户画像,掌握每个业务员的性别、年龄、行为、转化率,以提高业绩”。

这时候咋办?

如果用MVP思路,先不要急着去跑数,也不要急着列一大堆“用户画像标准指标”,而是直接拿着业务方提的最初的需求:“性别、年龄、行为、转化率,以提高业绩”直接给一个虚拟结果,然后确认:“如果我真的提供这些东西,你们真的能提高业绩?”——让他确认

‍‍‍‍‍                          

至少只基于这一句话来看,数据分析能输出的结论是完全无用的。1.0版本的MVP测试不通过,要么放弃这个需求,要么继续想想:该怎么更好的抓用户痛点。这样把数据推向2.0版本。

2.0版本MVP​

进一步看,1.0版本的问题在于:没有清晰目标。所谓画像指标一大堆,到底看了要干啥没想清楚。如果聚集目标,比如:找到业绩好的业务员。这样就更清晰了一步。

这里就需要引入更多分析,因为“好”“不好”本身就需要做分析

  • 用什么指标衡量好
  • 连续好,还是单次好
  • 在什么范围内评选好

在这个阶段,做MVP时,可以直接把一些可预计的,很纠结的问题提前丢出来,和业务方一起提前思考应对方案,而不是等着跑了一大堆数据,自己闷头计算好几轮以后再讨论。越早讨论,越能提前刨累,避免无用功。

比如评价:“好/坏”中常见的多指标重叠问题(如下图)

比如业绩表现不稳定问题(如下图)

至于和本阶段无关的指标,可以大胆做减法,丢了再说。有新的目标出来,再围绕新的目标组织数据。避免不分青红皂白,先捞一堆数再说的做法——数据分析师不能按时下班,都是被这些破事折腾的。

把这些梳理清楚,就有了2.0版本的MVP。(如下图)

 

看起来,似乎已经比1.0版清晰了很多,删减了很多无效指标,聚焦到一个明确的目标上。注意,这时候仍然还没有跑任何数据,只是基于经验的虚拟,但是已经能把“早就知道了”的数据暴露出来,并且能过滤掉“其实没啥用”的指标,并且把可能有歧义的地方以具体案例的形式具体讨论,从而极大规避问题。

但是注意,这还不是一个合格的MVP,因为知道谁好谁坏,又能怎样?知道李四是真的好了,大家就能成为李四吗?还是根本李四是不可复制的,我得找更多类似李四的人进来?这些问题都没有答案。所以此时还是无法直接得出:这数据就能提高业绩。MVP测试不通过,继续!

3.0版本MVP

只告诉谁好,谁不好是不能提升业绩的。业绩是一线做出来的,一线需要的是SOP,是弹药,因此数据要进一步做,比如:

  • 优秀标杆的数据指标(呼叫次数?时间分配?跟进机会?)
  • 优秀标杆的目标客户(是否特定客户容易成功?)
  • 优秀标杆的销售技巧(用哪些话术?利用哪些物料/活动?)

注意,这里已经不仅仅是数据的范畴了,数据只能打标签,列指标。但话术、语气、时机把握是需要培训/业务部门提供的。因此在此阶段做MVP的时候,可以直接向业务部门明确:是否只输出数据就能满足需求。如果不能,趁早拉其他部门一起干活,不要自己埋头别憋数据。

4.0版本MVP

看起来3.0版本已经很厉害了。然而有个隐藏的BUG,就是别人有没有可能学会。注意,这个不可知,会极大的阻碍业务认可数据分析的结果——落地不见效,到底是因为数据分析结论错了,还是执行没到位?这个可得提前安排明白,不然事后背锅分分钟的事。

因此,还需要在现在版本基础上,增加测试环节,检验到底有没有用。

这样,又涉及到:

  • 选多大范围进行测试
  • 测试时间周期多长
  • 如何排除节假日、活动等其他因素
  • 测试结果认证标准

把这些想清楚了,就有4.0版本。

 

在这个阶段,终于能将数据需求,指向一个业务期望的“提升业绩”的结果了。并且最终结果有测试数据回收验证,即使测试不成立,也有备用方案垫底。这时候可以放心大胆去跑数,跑出来一定有用。

MVP测试的广泛应用

注意,MVP测试,是紧密围绕用户需求的。上边的例子之所以做了好几个版本,源头上是因为用户期望值高,指望直接见业绩。如果用户期望值不高,MVP测试可以很简单。

比如:

  • 用户需求是:目前没有数据→ 尽快提供数据
  • 用户需求是:目前数据太多→ 删掉无用指标
  • 用户需求是:目标数据太乱→ 重新整理逻辑
  • 用户需求是:不清楚问题在哪→ 输出可量化的问题点

这些只要提前虚拟个数据,做个图确认下需求,就能解决。

稍微复杂一点的,比如用户需求是:精准预测销量,可能只要梳理两三步,就能更细化范围,提升有用程度(如下图)。

为什么要推MVP方法

数据分析领域,一直有一个八爪鱼派在流行,就是不管有没有用,不管有没逻辑,像一只八爪鱼一样丢一大堆指标过来(如下图):

 

这种做法,张牙舞爪,看着厉害,可是实际上却是项目失败的根源。让做数据的人误以为工作就是做作业,不考虑实际效果,一味贪大求多,最后累得半死还不讨好。

相比之下,做到下面几点,才能更快地积累分析经验,让数据更好发挥作用。

  • 多研究业务数据的基本形态
  • 多发现业务对数据实际需求
  • 多测试数据有用的点
  • 剔除无用的,空洞的,高大全的指标

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

数据分析MVP方法是什么?该怎么用?

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

数据分析MVP方法是什么?该怎么用?

MVP(Minimum Viable Product)原本是应用于产品设计的方法。指在正式推出产品前,先推出一个版包含核心功能的简单版本,测试用户需求与反馈,从而快速判断产品是否符合市场需求,做出调整。
数据分析MVP2024-12-01

数据分析项目是什么?该怎么做?

即使是数字本身,也很难体现价值。比如原因分析,即使不看数据,业务自己也能猜到几条原因。如果仅仅局限在业务提一个假设数据验证一个,那就跟叼飞盘的汪子没啥区别。虽然自己跑得辛苦,人家还认为你就是个打杂的。

数据分析应该分析什么?

  欢迎各位阅读本篇,数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。本篇文章讲述了数据分析应该分析什么?  很多时候我们走的走的就会忘记当初为什么而出发。  我们有的时候在拿到数据以后不知道该怎么进行分析,该去分析什么,其实这些在我们以前的统计
数据分析应该分析什么?
2024-04-23

麦肯锡都在用的MVP分析法,到底是什么?

MVP(Minimum Viable Product)原本是应用于产品设计的方法。指在正式推出产品前,先推出一个版包含核心功能的简单版本,测试用户需求与反馈,从而快速判断产品是否符合市场需求,做出调整。

python分析数据的方法是什么

Python是一种广泛使用的编程语言,可以通过多种方法来分析数据。以下是一些常见的方法:使用pandas库:pandas是一个数据处理库,可以方便地读取、处理和分析数据。你可以使用pandas来加载数据集、筛选数据、计算统计信息等。使用nu
python分析数据的方法是什么
2024-03-01

Python数据分析的方法是什么

本篇内容介绍了“Python数据分析的方法是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!01 指标拆解TGI计算公式中,有三个关键点需
2023-06-16

什么是顶级的数据分析方法?

数据分析的方法是非常多的。但为什么很多同学感觉自己没用上方法呢?因为每种方法是和业务场景、领导风格、数据质量、息息相关的。

r语言数据分析的实现方法是什么

R语言是一种功能强大的编程语言和环境,特别适用于数据分析。以下是R语言实现数据分析的一般方法:1. 数据导入:使用R语言中的函数从各种数据源(如CSV、Excel、数据库)中导入数据集,并将其存储在R中的数据结构(如数据框)中。2. 数据清
2023-09-15

R语言空间数据分析的方法是什么

R语言可以使用许多方法来进行空间数据分析,包括但不限于:空间数据可视化:R中提供了许多绘图包,如ggplot2、leaflet等,可以用来绘制各种类型的空间数据图表,包括散点图、线图、面图等。空间数据读取与处理:R中有许多专门用于读取和处理
R语言空间数据分析的方法是什么
2024-04-30

大数据分析是什么?

现阶段,大数据时代的不断发展,让数据分析岗也跟着火了起来,但是很多的一部分人还不了解,什么是数据分析,有什么前景?

python天气数据爬取与分析的方法是什么

Python天气数据爬取与分析的方法主要包括以下几个步骤:1. 确定数据来源:选择一个合适的天气数据源,可以通过网站API获取天气数据,如中国气象数据网、气象数据云等。2. 爬取天气数据:使用Python的网络爬虫库,如BeautifulS
2023-10-12

数据分析报告,【建议】部分该怎么写?

当然,这些都建立在一个基本前提上:你得能分清看到的是结果数据还是过程数据。曾经有个同学问陈老师:“老师,我要如何提升策略性思考能力,你看我们现在明明一切做得很好,可转化率就是上不去,为啥嗯?”

android解析json数据的方法是什么

Android中解析JSON数据的方法有多种,下面列举了几种常用的方法:1. 使用JSONObject和JSONArray:首先将JSON数据转换为JSONObject或JSONArray对象,然后通过对应的get方法获取具体的值,例如:j
2023-10-18

运营数据分析体系,该怎么搭建?

运营工作,和销售、供应有明显区别。比如销售工作,核心关注收入、利润、转化率,能赚钱就行。比如供应,核心关注商品供应、库存周转、成本控制,不缺货,少积压就行。这些工作的目标聚焦,流程清晰。

oracle数据库分页的方法是什么

在Oracle数据库中,可以使用ROWNUM和ROW_NUMBER函数来实现分页功能。使用ROWNUM:SELECT * FROM (SELECT t.*, ROWNUM AS rnFROM table_name tWHERE condi
oracle数据库分页的方法是什么
2024-04-22

python数据分析指的是什么

这篇文章给大家分享的是有关python数据分析指的是什么的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。python有哪些常用库python常用的库:1.requesuts;2.scrapy;3.pillow;4.
2023-06-14

Linux用户行为分析的方法是什么

这篇“Linux用户行为分析的方法是什么”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Linux用户行为分析的方法是什么”文
2023-06-27

MySQL实现数据分页的方法是什么

MySQL实现数据分页的方法通常是使用LIMIT子句。通过在查询语句中使用LIMIT子句,可以限制返回的数据行数,并可以指定返回数据的起始位置。例如,以下是一个基本的数据分页查询语句示例:SELECT * FROM table_name
MySQL实现数据分页的方法是什么
2024-04-09

java分页数据提交的方法是什么

在Java中,分页数据提交通常使用HTTP请求,其中常见的方法有GET和POST。GET方法是通过URL参数传递分页数据,例如:```http://example.com/data?page=1&pageSize=10```在服务器端,可以
2023-08-19

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录