我的编程空间,编程开发者的网络收藏夹
学习永远不晚

高级的数据分析,长啥样?

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

高级的数据分析,长啥样?

这个问题一出,又问劈了很多同学。

妈耶,平时都在跑取数单,啥是高级的数据分析见都没见过,咋整?今天系统分享一下。

一、通俗解释,什么算高级

问一个简单的问题:汽车上如果没导航,能不能开车?答:绝对可以。实际上导航普及也没几年时间。但没有导航,开车会异常麻烦:找不到路;错过路口兜一大圈;傻乎乎堵在路上不会绕……总之开车效率低了很多。

这时候,只有各种路况牢记于心的老司机才能又快又准的抵达终点——这是人们通常心目中的“高级司机”。如果你去采访他,他一定有很多“高级开车方法”可以分享。

但是有了导航以后,开车学习成本极大降低,以前菜鸟连路都找不到,现在按着导航走,也能大差不差地到达终点。虽然高级的司机肯定还是会略快一点,但是高级程度已经大大下降了——因为结果上的差距拉近了很多。

虽然老司机们口头上还是会有很多复杂的,难以学习的技巧,但是结果的差距相近,让人们不再那么迷信他们。反而开始吐槽他们的各种恶习:加塞、压实线、变道不打灯……

所以我们看到,所谓的高级有两种理解:

1、业务上的高级:被少数高人掌握,结果上又快又准,口头炫酷复杂。

2、技术上的高级:能帮助大量菜鸟,结果上提升效率,操作简单轻松。 

那么问题来了:数据分析,算是技术呢?还是业务呢?

二、高级的数据分析,需要什么

之所以举导航的例子,是因为数据分析和导航非常类似:

所以理论上,最高级的数据分析成果,就应该类似导航:

真正高级的数据分析,是体系化作战,以业务流程为保障,以数据采集为基础,以报表为骨干,以数据产品为卖点,兼有业务经验沉淀与模型辅助,是一套简单易用的工具体系(如下图所示)。

但是,如果在面试或者对外交流的时候,经常有些不懂行的人出来嘀咕:你这个做得不够高级呀。为啥呢???

三、为啥不识货的人那么多

越高级的数据分析,在菜鸟眼中越简单!

因为其中太多脚踏实地干活的部分,完全不够炫酷、玄幻、高大上嘛!

他们会不停嚷嚷:

  • 数据本来就很大呀!
  • 不就是做个报表吗!
  • 不就是做个提醒吗!
  • 你这预测也太简单了!
  • 能不能我嘴上不说,你自动预测我心里想什么! 

你要是试图给他们解释:这个只是看起来简单,需要打通n个系统,做n多埋点,采集n多数据,进行n次反复实验。就像你要跟他解释导航软件需要搞遥感,街道实拍,预计算路径一样——他既听不懂,也不觉得很高级。

他们会继续嚷嚷:导航不是很多人都能做吗,不就是输入一个地址吗,有啥难的。总之,对他们而言,操作简单就是方法简单,只要听懂名字就等于理解过程。他们渴望的是过程听不懂且效果出人意料地牛逼的玩意。

是滴,菜鸟们需要的不是个数据分析师,而是个巫师。带着尖尖帽子,拿着魔杖,穿着灰色长袍,口中念着:阿瓦达克拉夫拉!然后变出一堆钞票来。你不张嘴,他掐指一算,便知施主今日星座运势——这看起来多高级!

当然,行业里还是有识货的人,但是万一遇上这种菜鸡,还偏爱跟你较真:“你有没有啥高级的方法”,该咋对付呢?

四、如何提升数据分析的高级感

我们拿看似最简单的销售分析举个例子。注意,以下方法只适用于面对不懂行且豪横的坏人。本质上,这种质疑来自对数据分析工作的不理解,和对自身能力的过度自负。所以想要怼回去,刹掉对方的锐气,可以这么干:

第一步:反客为主。

把他想抨击你的话,主动说了。走他的路,让他无路可走。

第二步:展示神迹。

注意:评价数据分析方法是否高级,本质看效果。所以想说一个高级的东西,先讲,这么干有什么好处。(如下图)

第三步:引经据典。

本质上菜鸟们喜欢:模型、思维、范式这种巨牛逼的名字,所以起个牛逼名字。比如:“我用数据分析发现了与销售业绩关联度高的5个维度”,直接叫“构建销售五力模型”。是不是逼格一下上来了。类似的:“我按照5个维度对销售进行了聚类分析,划分为5个群体”直接叫“构建分层精准运营体系”……绝对好使!

第四步:繁花似锦。

不要解释太多操作细节,解释多了,他听懂了,还嫌弃你不够“高级”。类似:“我按照XXX规则提取销售名单交给业务部进行跟进,经过1个月检验发现65%预测正确,30%出现误差”就太脚踏实地了。直接叫:“建立赋能系统,进行5轮迭代,持续优化模型效能”直接把人看趴下。

差不多几步下来,对方或是喷人锐气丧尽,或是被吹得心满意足。如果有诚意合作的就直接往下聊了。如果是故意找茬的人,也无从下口——因为他自己也没有高明到哪里去。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

高级的数据分析,长啥样?

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

高级的数据分析,长啥样?

我们拿看似最简单的销售分析举个例子。注意,以下方法只适用于面对不懂行且豪横的坏人。本质上,这种质疑来自对数据分析工作的不理解,和对自身能力的过度自负。

一个完整的数据分析体系,该长啥样?

在整个体系中,经营分析是直接服务于战略级决策的。在最高管理层做决策的时候,更聚焦于宏观的问题,比如整体目标达成,外部环境变化,内部举措效果。而不是陷在琐碎的业务细节里。

经营分析的三个等级,最厉害的长啥样?

经营活动太多,导致的交叉重叠问题。在中级分析部分,我们已经知道:活动之间可能有重叠,新旧产品可能有替代,新老渠道可能有冲突,研发升级不见得有效果……总之,每件事都会产生成本,但不是每件事都能挣钱。

打工人,支撑亿级高并发的系统长啥样?

这是一道很常见的面试题,但是大多数人并不知道怎么回答,这种问题其实可以有很多形式的提问方式,你一定见过而且感觉无从下手。

用户增长是什么?和数据分析有啥关系?

很多同学会经常看到“用户增长”“增长黑客”“增长团队”之类的说法,并且这些岗位常常一眼看上去和数据分析有关系。

这是我见过最【高级】的数据分析

作为从业者,我们还是希望业内浮躁盲目的气氛少一点,大家多认真干活,这也是陈老师努力科普的原因。并且这里有些工作,比如预测业绩,比如预测响应率,还是需要用到一定算法,比直接跑报表有技术含量。​

爬了4332条淘宝数据,看看1780元的粽子长啥样?

端午节到了,甜咸粽子之争也拉开了帷幕。我用 Python 爬取了淘宝上的粽子数据并进行分析,看看有什么发现。

高级数据分析常见的五种挑战

我们经常听到高级分析的成功案例。人们对人工智能的期望很高——据预测人工智能和人工智能的年经济价值将在9.5万亿到15.4万亿美元之间——因此,只要有可能,许多人都想把目光聚焦在数据分析技术的发展上。

通过率8.96%!高级合格人数增长52.82%!「杭州软考」数据分析来啦!

2024年上半年浙江软考合格人员名单公布,其中,杭州地区2024年上半年软考合格人数有3017人,占浙江省总合格人数的72.77%。高级合格人数2005人,相较于2023年下半年的1312人,增长了52.82%。
通过率8.96%!高级合格人数增长52.82%!「杭州软考」数据分析来啦!
2024-09-03

Python数据分析领域的十大高级技巧

本文是我们精心挑选了十大高级技巧,适用于数据科学家、分析师以及任何希望深入探索Python数据分析的人。

数据分析,根本没有你想的那么高级!

在数字化转型工作中,十分强调通过数据科学技术来发挥数据的价值,例如通过数据分析方法,从数据中提取出有价值的业务信息,以此来提供有效的业务应用或业务决策。在数字经济大趋势下,数据分析这件事,突然之间地位得到了前所未有的提升。

Python高级数据结构与算法实例分析

本文小编为大家详细介绍“Python高级数据结构与算法实例分析”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python高级数据结构与算法实例分析”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。一、简介我们将从以
2023-07-05

python数据分析入门是怎样的

这篇文章将为大家详细讲解有关python数据分析入门是怎样的,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。 随着Python自身功能的完善以及生态系统的扩展,Python在Web开发、网络爬
2023-06-02

Python数据分析过程是怎样的

这篇文章主要介绍“Python数据分析过程是怎样的”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析过程是怎样的”文章能帮助大家解决问题。一、需求介绍该需求主要是分析某一种数据的历史
2023-06-26

怎样进行mysql数据库的分析

怎样进行mysql数据库的分析,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。一、数据库是什么?数据库是管理数据的一类软件。对数据的管理体现在两个方面,第一是描述数据,即一条
2023-06-22

高级数据分析在塑造未来业务中的作用

在数据至高无上的时代,公司正在积极拥抱高级数据分析,以获得竞争优势。统计数据不言而喻:到2025年,超过25%的数据将是实时的,其中95%是由物联网产生的。

高级数据分析在塑造商业未来中的作用

在塑造商业未来的过程中,高级数据分析认证正在成为不可或缺的工具。随着组织努力在日益数据驱动的世界中蓬勃发展,拥有这些认证的专业人员成为创新、明智决策和卓越运营背后的驱动力。

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录