我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python基于决策树算法的分类预测怎么实现

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python基于决策树算法的分类预测怎么实现

今天小编给大家分享一下Python基于决策树算法的分类预测怎么实现的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

一、决策树的特点

1.优点

  • 具有很好的解释性,模型可以生成可以理解的规则。

  • 可以发现特征的重要程度。

  • 模型的计算复杂度较低。

2.缺点

  • 模型容易过拟合,需要采用减枝技术处理。

  • 不能很好利用连续型特征。

  • 预测能力有限,无法达到其他强监督模型效果。

  • 方差较高,数据分布的轻微改变很容易造成树结构完全不同。

二、决策树的适用场景

  • 决策树模型多用于处理自变量与因变量是非线性的关系。

  • 梯度提升树(GBDT),XGBoost以及LightGBM等先进的集成模型均采用决策树作为基模型。(多粒度联森林模型)

  • 决策树在一些明确需要可解释性或者提取分类规则的场景中被广泛应用。在医疗辅助系统中为了方便专业人员发现错误,常常将决策树算法用于辅助病症检测。

三、demo

#%%demo##  基础函数库导入import numpy as np ## 导入画图库import matplotlib.pyplot as pltimport seaborn as sns## 导入决策树模型函数from sklearn.tree import DecisionTreeClassifierfrom sklearn import treeimport pydotplus from IPython.display import Image##Demo演示DecisionTree分类## 构造数据集x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])y_label = np.array([0, 1, 0, 1, 0, 1])## 调用决策树回归模型tree_clf = DecisionTreeClassifier()## 调用决策树模型拟合构造的数据集tree_clf = tree_clf.fit(x_fearures, y_label)## 可视化构造的数据样本点plt.figure()plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')plt.title('Dataset')plt.show()## 可视化决策树import graphvizdot_data = tree.export_graphviz(tree_clf, out_file=None)graph = pydotplus.graph_from_dot_data(dot_data)graph.write_pdf("D:\Python\ML\DecisionTree.pdf") # 模型预测## 创建新样本x_fearures_new1 = np.array([[0, -1]])x_fearures_new2 = np.array([[2, 1]])## 在训练集和测试集上分布利用训练好的模型进行预测y_label_new1_predict = tree_clf.predict(x_fearures_new1)y_label_new2_predict = tree_clf.predict(x_fearures_new2)print('The New point 1 predict class:\n',y_label_new1_predict)print('The New point 2 predict class:\n',y_label_new2_predict)

运行结果

Python基于决策树算法的分类预测怎么实现

训练集决策树

Python基于决策树算法的分类预测怎么实现

Python基于决策树算法的分类预测怎么实现

以上就是“Python基于决策树算法的分类预测怎么实现”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python基于决策树算法的分类预测怎么实现

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python基于决策树算法的分类预测怎么实现

今天小编给大家分享一下Python基于决策树算法的分类预测怎么实现的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。一、决策树的
2023-06-26

python如何实现决策树分类算法

今天小编给大家分享一下python如何实现决策树分类算法的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。前置信息1、决策树决策
2023-07-02

python决策树算法怎么实现

这篇文章将为大家详细讲解有关python决策树算法怎么实现,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1、步骤计算数据集S中的每个属性的熵 H(xi)选取数据集S中熵值最小(或者信息增益最大,两者等价)
2023-06-15

怎么用Python实现CART决策树算法

这篇文章主要讲解了“怎么用Python实现CART决策树算法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么用Python实现CART决策树算法”吧!一、CART决策树算法简介CART(C
2023-06-25

怎么在Python中实现决策树算法

怎么在Python中实现决策树算法?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。1.算法概述决策树算法是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大
2023-06-15

OpenCV基于分水岭算法的图像分割怎么实现

本文小编为大家详细介绍“OpenCV基于分水岭算法的图像分割怎么实现”,内容详细,步骤清晰,细节处理妥当,希望这篇“OpenCV基于分水岭算法的图像分割怎么实现”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。1.
2023-07-05

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录