python实现决策树分类算法代码示例
前置信息
1、决策树
决策树是一种十分常用的分类算法,属于监督学习;也就是给出一批样本,每个样本都有一组属性和一个分类结果。算法通过学习这些样本,得到一个决策树,这个决策树能够对新的数据给出合适的分类
2、样本数据
假设现有用户14名,其个人属性及是否购买某一产品的数据如下:
编号 | 年龄 | 收入范围 | 工作性质 | 信用评级 | 购买决策 |
---|---|---|---|---|---|
01 | <30 | 高 | 不稳定 | 较差 | 否 |
02 | <30 | 高 | 不稳定 | 好 | 否 |
03 | 30-40 | 高 | 不稳定 | 较差 | 是 |
04 | >40 | 中等 | 不稳定 | 较差 | 是 |
05 | >40 | 低 | 稳定 | 较差 | 是 |
06 | >40 | 低 | 稳定 | 好 | 否 |
07 | 30-40 | 低 | 稳定 | 好 | 是 |
08 | <30 | 中等 | 不稳定 | 较差 | 否 |
09 | <30 | 低 | 稳定 | 较差 | 是 |
10 | >40 | 中等 | 稳定 | 较差 | 是 |
11 | <30 | 中等 | 稳定 | 好 | 是 |
12 | 30-40 | 中等 | 不稳定 | 好 | 是 |
13 | 30-40 | 高 | 稳定 | 较差 | 是 |
14 | >40 | 中等 | 不稳定 | 好 | 否 |
策树分类算法
1、构建数据集
为了方便处理,对模拟数据按以下规则转换为数值型列表数据:
年龄:<30赋值为0;30-40赋值为1;>40赋值为2
收入:低为0;中为1;高为2
工作性质:不稳定为0;稳定为1
信用评级:差为0;好为1
#创建数据集
def createdataset():
dataSet=[[0,2,0,0,'N'],
[0,2,0,1,'N'],
[1,2,0,0,'Y'],
[2,1,0,0,'Y'],
[2,0,1,0,'Y'],
[2,0,1,1,'N'],
[1,0,1,1,'Y'],
[0,1,0,0,'N'],
[0,0,1,0,'Y'],
[2,1,1,0,'Y'],
[0,1,1,1,'Y'],
[1,1,0,1,'Y'],
[1,2,1,0,'Y'],
[2,1,0,1,'N'],]
labels=['age','income','job','credit']
return dataSet,labels
调用函数,可获得数据:
ds1,lab = createdataset()
print(ds1)
print(lab)
[[0, 2, 0, 0, ‘N’], [0, 2, 0, 1, ‘N’], [1, 2, 0, 0, ‘Y’], [2, 1, 0, 0, ‘Y’], [2, 0, 1, 0, ‘Y’], [2, 0, 1, 1, ‘N’], [1, 0, 1, 1, ‘Y’], [0, 1, 0, 0, ‘N’], [0, 0, 1, 0, ‘Y’], [2, 1, 1, 0, ‘Y’], [0, 1, 1, 1, ‘Y’], [1, 1, 0, 1, ‘Y’], [1, 2, 1, 0, ‘Y’], [2, 1, 0, 1, ‘N’]]
[‘age’, ‘income’, ‘job’, ‘credit’]
2、数据集信息熵
信息熵也称为香农熵,是随机变量的期望。度量信息的不确定程度。信息的熵越大,信息就越不容易搞清楚。处理信息就是为了把信息搞清楚,就是熵减少的过程。
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob*log(prob,2)
return shannonEnt
样本数据信息熵:
shan = calcShannonEnt(ds1)
print(shan)
0.9402859586706309
3、信息增益
信息增益:用于度量属性A降低样本集合X熵的贡献大小。信息增益越大,越适于对X分类。
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0])-1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0;bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntroy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prop = len(subDataSet)/float(len(dataSet))
newEntroy += prop * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntroy
if(infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
以上代码实现了基于信息熵增益的ID3决策树学习算法。其核心逻辑原理是:依次选取属性集中的每一个属性,将样本集按照此属性的取值分割为若干个子集;对这些子集计算信息熵,其与样本的信息熵的差,即为按照此属性分割的信息熵增益;找出所有增益中最大的那一个对应的属性,就是用于分割样本集的属性。
计算样本最佳的分割样本属性,结果显示为第0列,即age属性:
col = chooseBestFeatureToSplit(ds1)
col
0
4、构造决策树
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classList.iteritems(),key=operator.itemgetter(1),reverse=True)#利用operator操作键值排序字典
return sortedClassCount[0][0]
#创建树的函数
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
majorityCnt
函数用于处理一下情况:最终的理想决策树应该沿着决策分支到达最底端时,所有的样本应该都是相同的分类结果。但是真实样本中难免会出现所有属性一致但分类结果不一样的情况,此时majorityCnt
将这类样本的分类标签都调整为出现次数最多的那一个分类结果。
createTree
是核心任务函数,它对所有的属性依次调用ID3信息熵增益算法进行计算处理,最终生成决策树。
5、实例化构造决策树
利用样本数据构造决策树:
Tree = createTree(ds1, lab)
print("样本数据决策树:")
print(Tree)
样本数据决策树:
{‘age’: {0: {‘job’: {0: ‘N’, 1: ‘Y’}},
1: ‘Y’,
2: {‘credit’: {0: ‘Y’, 1: ‘N’}}}}
6、测试样本分类
给出一个新的用户信息,判断ta是否购买某一产品:
年龄 | 收入范围 | 工作性质 | 信用评级 |
---|---|---|---|
<30 | 低 | 稳定 | 好 |
<30 | 高 | 不稳定 | 好 |
def classify(inputtree,featlabels,testvec):
firststr = list(inputtree.keys())[0]
seconddict = inputtree[firststr]
featindex = featlabels.index(firststr)
for key in seconddict.keys():
if testvec[featindex]==key:
if type(seconddict[key]).__name__=='dict':
classlabel=classify(seconddict[key],featlabels,testvec)
else:
classlabel=seconddict[key]
return classlabel
labels=['age','income','job','credit']
tsvec=[0,0,1,1]
print('result:',classify(Tree,labels,tsvec))
tsvec1=[0,2,0,1]
print('result1:',classify(Tree,labels,tsvec1))
result: Y
result1: N
后置信息:绘制决策树代码
以下代码用于绘制决策树图形,非决策树算法重点,有兴趣可参考学习
import matplotlib.pyplot as plt
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
#获取叶节点的数目
def getNumLeafs(myTree):
numLeafs = 0
firstStr = list(myTree.keys())[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':#测试节点的数据是否为字典,以此判断是否为叶节点
numLeafs += getNumLeafs(secondDict[key])
else: numLeafs +=1
return numLeafs
#获取树的层数
def getTreeDepth(myTree):
maxDepth = 0
firstStr = list(myTree.keys())[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':#测试节点的数据是否为字典,以此判断是否为叶节点
thisDepth = 1 + getTreeDepth(secondDict[key])
else: thisDepth = 1
if thisDepth > maxDepth: maxDepth = thisDepth
return maxDepth
#绘制节点
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
xytext=centerPt, textcoords='axes fraction',
va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
#绘制连接线
def plotMidText(cntrPt, parentPt, txtString):
xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
#绘制树结构
def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
numLeafs = getNumLeafs(myTree) #this determines the x width of this tree
depth = getTreeDepth(myTree)
firstStr = list(myTree.keys())[0] #the text label for this node should be this
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
plotMidText(cntrPt, parentPt, nodeTxt)
plotNode(firstStr, cntrPt, parentPt, decisionNode)
secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
plotTree(secondDict[key],cntrPt,str(key)) #recursion
else: #it's a leaf node print the leaf node
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#创建决策树图形
def createPlot(inTree):
fig = plt.figure(1, facecolor='white')
fig.clf()
axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) #no ticks
#createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses
plotTree.totalW = float(getNumLeafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
plotTree(inTree, (0.5,1.0), '')
plt.savefig('决策树.png',dpi=300,bbox_inches='tight')
plt.show()
总结
到此这篇关于python实现决策树分类算法的文章就介绍到这了,更多相关python决策树分类算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341