我的编程空间,编程开发者的网络收藏夹
学习永远不晚

性能测试 基于Python结合Influ

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

性能测试 基于Python结合Influ

基于Python结合InfluxDB及Grafana图表实时采集Linux多主机性能数据

 

by:授客 QQ:1033553122

 

实现功能 1

测试环境 1

环境搭建 3

使用前提 3

使用方法 3

运行程序 5

效果展示 6

 

 

实现功能

无需在被监控主机上安装代理,一键对Linux远程服务器不同主机执行性能监控、性能数据采集命令,并实时展示

 

支持跨堡垒机收集实时性能数据(注:定制化开发,非通用)

 

支持docker容器(因为程序实现是从docker容器内部获取性能数据,所以目前仅支持 CPU,内存,I/O)

 

使用前提

可以用Xshell等工具远程连接Linux主机

 

Linux主机支持sar命令

 

dokcer容器内部挂载了docker容器自身的cgroup系统

 

注:目前不支持嵌套cgroup下子cgroup的性能数据监控

 

测试环境

Win7 64位

 

Python 3.4.0

 

CentOS 6 64位(内核版本2.6.32-642.el6.x86_64)

 

influxdb-1.5.2.x86_64.rpm

网盘下载地址:

https://pan.baidu.com/s/1jAbY4xz5gvzoXxLHesQ-PA

 

 

grafana-5.1.2-1.x86_64.rpm

下载地址:

https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana-5.1.3-1.x86_64.rpm

下载地址:https://pan.baidu.com/s/1wtnPH-iYxaXc6FnL1i0ZVg

 

 

influxdb-5.0.0-py2.py3-none-any.whl

下载地址:

https://pypi.org/project/influxdb/#files

下载地址:https://pan.baidu.com/s/1DQ0HGYNg2a2-VnRSBdPHmg

 

paramiko 1.15.2

下载地址:

https://pypi.python.org/pypi/paramiko/1.15.2

https://pan.baidu.com/s/1i4SJ1CL

 

cryptography-1.0-cp34-none-win_amd64.whl

(如果paramiko可以正常安装完,则不需要安装该类库)

下载地址:

https://pypi.python.org/pypi/cryptography/1.0

https://pan.baidu.com/s/1jIRBJvg

 

安装好后,找到nt.py(本例中路径为:

Lib\site-packages\pycrypto-2.6.1-py3.4-win-amd64.egg\Crypto\Random\OSRNG\nt.py),修改

import winrandom

from Crypto.Random.OSRNG import winrandom

如下

#import winrandom

from Crypto.Random.OSRNG import winrandom

 

以解决ImportError: No module named 'winrandom'错误

 

说明:具体文件路径可能还得根据实际报错情况来确定,如下

............(略)

"D:\Program Files\python33\lib\site-packages\Crypto\Random\OSRNG\nt.py", line 28, in

    import winrandom

ImportError: No module named 'winrandom'

 

 

 

VS2010

因操作系统而异,可能需要安装VS2010,以解决包依赖问题

 

 

 

环境搭建

参考CentOS下结合InfluxDB及Grafananux图表实时展示JMeter相关性能数据

grafna 数据源数据库配置:db_目标ip地址


使用方法

influxDB主机配置

monitor\conf\influxDB.conf

[INFLUXDB]

influxdb_host = 10.203.25.106

influxdb_port = 8086

 

主机登录信息配置

(用于远程ssh登录)

monitor\conf\host_config.conf

[10.203.36.1]

host = 10.203.36.1

username = xxxx

password = xxxx

port = 22

remark = 鉴权微服务

 

[10.203.36.33]

host = 10.203.36.33

username = xxxx

password = xxxx

port = 22

remark = 发货微服务

 

[10.202.27.5]

host = 10.202.27.5

username = xxxx

password = xxxx

port = 22

remark = 堡垒机

 

 

[10.202.27.6]

host = 10.202.27.6

username = xxxx

password = xxxx

port = 22

remark = 堡垒机

 

 

说明:

[需要监控的Linux服务器IP]

host = 需要监控的Linux服务器IP

username = 远程登录用户名

password = 用户密码

port = 22

remark = 补充说明

 

堡垒机-目标机配置

bastion_host_config.conf

[10.202.27.5]

ip1 = 10.203.33.18

ip2 = 10.203.33.19

ip3 = 10.203.33.20

 

[10.202.27.6]

ip4 = 10.203.33.21

ip5 = 10.203.32.49

ip6 = 10.203.33.4

 

说明:

[堡垒机ip]

自定义名称 = 需要通过堡垒机访问的目标ip

 

注意:不同堡垒机节点下的目标ip不能重复

 

堡垒机连接目标机,账号密码,登录用户选取等信息配置

monitor\conf\account.conf

[ACCOUNT]

user_id = 01367522

pwd = xxx

login_user_choice = 1

 

dokcer容器cpu, cpuacct,memory,blkio系统路径配置

[CGROUPPATH]

cpu_path=/sys/fs/cgroup/cpu

cpuacct_path=/sys/fs/cgroup/cpuacct

memory_path=/sys/fs/cgroup/memory

blkio_path=/sys/fs/cgroup/blkio/

 

#cpu_path=/cgroup/cpu/docker/docker/$CONTAINERID

#cpuacct_path=/cgroup/cpuacct/docker/docker/$CONTAINERID

#memory_path=/cgroup/memory/docker/docker/$CONTAINERID

#blkio_path=/cgroup/blkio/docker/docker/$CONTAINERID

 

#cpu_path=/cgroup/cpu/docker/d74ac2610ed325498767bc708197148d414bf6a7719f15c013dc2b6460690dd8

#cpuacct_path=/cgroup/cpuacct/docker/d74ac2610ed325498767bc708197148d414bf6a7719f15c013dc2b6460690dd8

#memory_path=/cgroup/memory/docker/d74ac2610ed325498767bc708197148d414bf6a7719f15c013dc2b6460690dd8

#blkio_path=/cgroup/blkio/docker/d74ac2610ed325498767bc708197148d414bf6a7719f15c013dc2b6460690dd8

 

说明:

系统路径支持简单的参数化,目前仅支持容器ID(大写的$CONTAINERID),如上

一次仅支持一组配置

 

配置单台目标机器上不要采集的性能指标维度(可选)

monitor\conf\host_filter.conf

[HOSTFILTER]

10.203.36.1 = onecpu, disk

#10.203.36.33 =

10.203.36.4 =

 

[HOSTFILTER]

待监控目标ip = 指标维度1, 指标维度2, 维度之间用逗号分隔

 

维度说明:

onecpu  不采集单个cpu的性能数据信息

queue   不采集系统负载队列长度和负载均值性能数据信息

proc    不采集任务创建和系统上下文切换信息

mem     不采集内存性能数据信息

swap    不采集swap交换统计信息

swapspace 不采集swap空间使用率信息

deviotps 不采集磁盘设备I/O性能数据信息

netdev  不采集网络设备(一般指网卡)的性能数据信息

enetdev 不采集网络设备(一般指网卡)的出错数据信息

disk    不采集单个磁盘的性能数据信息

paging  不采集分页信息

 

如果不需要过滤,可不配置,或者如上 设置ip等于空,或者用 #注释

 

 

待监控主机配置

monitor\conf\target_host_for_monitor.conf

# #代表注释

10.203.36.1

10.203.36.33

 

# 堡垒机

10.202.27.5

 

# 需要通过堡垒机访问的目标ip

ip1 = 10.203.33.18

 

 

注意:

1、每一行代表需要监控的ip

如果ip不需要通过堡垒机访问,那么这个ip必须在monitor\conf\host_config.conf有对应的配置才会被监控,不想监控则注释;

如果ip需要通过堡垒机访问,那么这个ip必须在 monitor\conf\bastion_host_config.conf 下有对应的配置,且这里必须配置对应堡垒机IP,才会被监控

 

 

 

运行程序

数据收集:

 

python main.py

 

或者

python main.py 2 20

 

python main.py 2 10+45+10

 

python main.py 2 ’10 + 45 + 10’

 

python main.py 2 20 onecpu netdev enetdev disk paging

 

python main.py 采集频率(默认1次/s) 采集时间(秒,默认1s) 不监控维度

 

说明:为了方便,采集时间可以写成加减运算表达式,省去“心算”,方便算术能力不好的人,比如我~~

 

如果需要设置不监控维度(每个维度之间用逗号相隔,目前仅支持以下维度),则一定要“显示”的指定采集频率和采集时间

 

onecpu  不采集单个cpu的性能数据信息

queue   不采集系统负载队列长度和负载均值性能数据信息

proc    不采集任务创建和系统上下文切换信息

mem     不采集内存性能数据信息

swap    不采集swap交换统计信息

swapspace 不采集swap空间使用率信息

deviotps 不采集磁盘设备I/O性能数据信息

netdev  不采集网络设备(一般指网卡)的性能数据信息

enetdev 不采集网络设备(一般指网卡)的出错数据信息

disk    不采集单个磁盘的性能数据信息

paging  不采集分页信息

 

注意:

1、这里的维度过滤是针对所有待监控目标机的,针对单台机器的过滤项是在这个基础上做的进一步过滤

 

2、如果逻辑CPU个数,磁盘设备,网卡设备过多的情况下,如果不过滤对应指标,可能会因为采集的数据量过大,解析耗时加长,无法及时显示所要的数据(特别是CPU,单台机器有几十个逻辑CPU的情况下,延迟会很严重)。

 

实践测试记录:公司服务器,1秒钟采集一次,采集1个小时,统一加过滤项,如下方式运行

 

python main.py 1 3600  onecpu netdev enetdev paging

 

44台机器同时采集(总的会开启88个线程),可以做到实时显示

 

3、docker容器监控,不支持维度过滤,即IO,CPU,内存要么监控,要么不监控

 

 

数据清理:

python dropDB.py

 

根据提示,可删除单个数据库,或者一次性删除所有数据库的数据

 

效果展示

性能测试_基于Python结合InfluxDB及Grafana图表实时采集Linux多主机或Docker容器性能数据

 


加群获取更多相关文档

 

源码获取地址:https://gitee.com/ishouke/PMonitor


 

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

性能测试 基于Python结合Influ

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

性能测试 基于Python结合Influ

基于Python结合InfluxDB及Grafana图表实时采集Linux多主机性能数据   by:授客 QQ:1033553122   实现功能 1 测试环境 1 环境搭建 3 使用前提 3 使用方法 3 运行程序 5 效果展
2023-01-30

基于Android的Web Kit性能对比测试

一、背景首先,因为目前的项目是基于JavaScript写的前端页面效果,其终要用在web app上呈现效果,其性能影响后期的产品效果,所以必须对JS写的脚本做一个性能测试。其次,产品是基于自己公司生产的pad(ROM自定义),其自带浏览器。
2022-06-06

GoFrame基于性能怎么测试grpool使用场景

今天小编给大家分享一下GoFrame基于性能怎么测试grpool使用场景的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。先说结
2023-07-02

基于Go Int转string几种方式性能测试

Go语言内置int转string至少有3种方式:fmt.Sprintf("%d",n) strconv.Itoa(n) strconv.FormatInt(n,10)下面针对这3中方式的性能做一下简单的测试:package gotest i
2022-06-07

基于真实应用环境下的 WEB REST API 性能测试

作为一名自由WEB开发工作者,我对各种框架和技术的性能非常感兴趣,但是我们在网络上看到的测试大多数都只是考虑到 Hello World 的例子。当我们构建真实的应用程序的时候,有更多的方面需要考虑,因此我决定在最流行的框架和技术之间运行一个完整的基准测试。除了性能,我还对在每个框架中实现特定任务的容易程度,以及扩展应用
基于真实应用环境下的 WEB REST API 性能测试
2024-04-02

基于Golang的区块链智能合约测试与验证技巧

在 go 中测试和验证区块链智能合约涉及以下技巧:单元测试:隔离测试智能合约的各个部分。集成测试:模拟区块链环境,测试与依赖项的交互。安全审计:识别和修复安全漏洞。形式验证:保证合约的特定属性。实战案例:利用现成的测试框架和网络。基于 Go
基于Golang的区块链智能合约测试与验证技巧
2024-05-10

在这个数组访问微基准测试中(相对于 GCC),Go 的性能损失了 4 倍,是什么原因造成的?

在这个数组访问微基准测试中(相对于GCC),Go的性能损失了4倍,是什么原因造成的?这个问题涉及到Go语言的运行时机制和编译器优化等多个方面。首先,Go语言在数组访问时使用了边界检查机制,即在每次访问数组元素时都会进行边界检查,这会带来一定
在这个数组访问微基准测试中(相对于 GCC),Go 的性能损失了 4 倍,是什么原因造成的?
2024-02-10

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录