我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python线程指南详细介绍

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python线程指南详细介绍

本文介绍了Python对于线程的支持,包括“学会”多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例。

注意:本文基于Python2.4完成,;如果看到不明白的词汇请记得百度谷歌或维基,whatever。

1. 线程基础

1.1. 线程状态

线程有5种状态,状态转换的过程如下图所示:

查看图片

1.2. 线程同步(锁)

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

线程与锁的交互如下图所示:

查看图片

1.3. 线程通信(条件变量)

然而还有另外一种尴尬的情况:列表并不是一开始就有的;而是通过线程"create"创建的。如果"set"或者"print" 在"create"还没有运行的时候就访问列表,将会出现一个异常。使用锁可以解决这个问题,但是"set"和"print"将需要一个无限循环——他们不知道"create"什么时候会运行,让"create"在运行后通知"set"和"print"显然是一个更好的解决方案。于是,引入了条件变量。

条件变量允许线程比如"set"和"print"在条件不满足的时候(列表为None时)等待,等到条件满足的时候(列表已经创建)发出一个通知,告诉"set" 和"print"条件已经有了,你们该起床干活了;然后"set"和"print"才继续运行。

线程与条件变量的交互如下图所示:

查看图片

查看图片

1.4. 线程运行和阻塞的状态转换

最后看看线程运行和阻塞状态的转换。

查看图片

阻塞有三种情况:
同步阻塞是指处于竞争锁定的状态,线程请求锁定时将进入这个状态,一旦成功获得锁定又恢复到运行状态;
等待阻塞是指等待其他线程通知的状态,线程获得条件锁定后,调用“等待”将进入这个状态,一旦其他线程发出通知,线程将进入同步阻塞状态,再次竞争条件锁定;
而其他阻塞是指调用time.sleep()、anotherthread.join()或等待IO时的阻塞,这个状态下线程不会释放已获得的锁定。

tips: 如果能理解这些内容,接下来的主题将是非常轻松的;并且,这些内容在大部分流行的编程语言里都是一样的。(意思就是非看懂不可 >_< 嫌作者水平低找别人的教程也要看懂)

2. thread
Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。


# encoding: UTF-8
import thread
import time
 
# 一个用于在线程中执行的函数
def func():
  for i in range(5):
    print 'func'
    time.sleep(1)
  
  # 结束当前线程
  # 这个方法与thread.exit_thread()等价
  thread.exit() # 当func返回时,线程同样会结束
    
# 启动一个线程,线程立即开始运行
# 这个方法与thread.start_new_thread()等价
# 第一个参数是方法,第二个参数是方法的参数
thread.start_new(func, ()) # 方法没有参数时需要传入空tuple
 
# 创建一个锁(LockType,不能直接实例化)
# 这个方法与thread.allocate_lock()等价
lock = thread.allocate()
 
# 判断锁是锁定状态还是释放状态
print lock.locked()
 
# 锁通常用于控制对共享资源的访问
count = 0
 
# 获得锁,成功获得锁定后返回True
# 可选的timeout参数不填时将一直阻塞直到获得锁定
# 否则超时后将返回False
if lock.acquire():
  count += 1
  
  # 释放锁
  lock.release()
 
# thread模块提供的线程都将在主线程结束后同时结束
time.sleep(6)

thread 模块提供的其他方法:

thread.interrupt_main(): 在其他线程中终止主线程。
thread.get_ident(): 获得一个代表当前线程的魔法数字,常用于从一个字典中获得线程相关的数据。这个数字本身没有任何含义,并且当线程结束后会被新线程复用。

thread还提供了一个ThreadLocal类用于管理线程相关的数据,名为 thread._local,threading中引用了这个类。

由于thread提供的线程功能不多,无法在主线程结束后继续运行,不提供条件变量等等原因,一般不使用thread模块,这里就不多介绍了。

3. threading
threading基于Java的线程模型设计。锁(Lock)和条件变量(Condition)在Java中是对象的基本行为(每一个对象都自带了锁和条件变量),而在Python中则是独立的对象。Python Thread提供了Java Thread的行为的子集;没有优先级、线程组,线程也不能被停止、暂停、恢复、中断。Java Thread中的部分被Python实现了的静态方法在threading中以模块方法的形式提供。

threading 模块提供的常用方法:
threading.currentThread(): 返回当前的线程变量。
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

threading模块提供的类:
Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local.

3.1. Thread

Thread是线程类,与Java类似,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():


# encoding: UTF-8
import threading
 
# 方法1:将要执行的方法作为参数传给Thread的构造方法
def func():
  print 'func() passed to Thread'
 
t = threading.Thread(target=func)
t.start()
 
# 方法2:从Thread继承,并重写run()
class MyThread(threading.Thread):
  def run(self):
    print 'MyThread extended from Thread'
 
t = MyThread()
t.start()

构造方法:
Thread(group=None, target=None, name=None, args=(), kwargs={})
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 线程名;
args/kwargs: 要传入方法的参数。

实例方法:
isAlive(): 返回线程是否在运行。正在运行指启动后、终止前。
get/setName(name): 获取/设置线程名。
is/setDaemon(bool): 获取/设置是否守护线程。初始值从创建该线程的线程继承。当没有非守护线程仍在运行时,程序将终止。
start(): 启动线程。
join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。

一个使用join()的例子:


# encoding: UTF-8
import threading
import time
 
def context(tJoin):
  print 'in threadContext.'
  tJoin.start()
  
  # 将阻塞tContext直到threadJoin终止。
  tJoin.join()
  
  # tJoin终止后继续执行。
  print 'out threadContext.'
 
def join():
  print 'in threadJoin.'
  time.sleep(1)
  print 'out threadJoin.'
 
tJoin = threading.Thread(target=join)
tContext = threading.Thread(target=context, args=(tJoin,))
 
tContext.start()

运行结果:

in threadContext.
in threadJoin.
out threadJoin.
out threadContext.

3.2. Lock

Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。

可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

构造方法:
Lock()

实例方法:
acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。


# encoding: UTF-8
import threading
import time
 
data = 0
lock = threading.Lock()
 
def func():
  global data
  print '%s acquire lock...' % threading.currentThread().getName()
  
  # 调用acquire([timeout])时,线程将一直阻塞,
  # 直到获得锁定或者直到timeout秒后(timeout参数可选)。
  # 返回是否获得锁。
  if lock.acquire():
    print '%s get the lock.' % threading.currentThread().getName()
    data += 1
    time.sleep(2)
    print '%s release lock...' % threading.currentThread().getName()
    
    # 调用release()将释放锁。
    lock.release()
 
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()

3.3. RLock

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。

可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法:
RLock()

实例方法:
acquire([timeout])/release(): 跟Lock差不多。


# encoding: UTF-8
import threading
import time
 
rlock = threading.RLock()
 
def func():
  # 第一次请求锁定
  print '%s acquire lock...' % threading.currentThread().getName()
  if rlock.acquire():
    print '%s get the lock.' % threading.currentThread().getName()
    time.sleep(2)
    
    # 第二次请求锁定
    print '%s acquire lock again...' % threading.currentThread().getName()
    if rlock.acquire():
      print '%s get the lock.' % threading.currentThread().getName()
      time.sleep(2)
    
    # 第一次释放锁
    print '%s release lock...' % threading.currentThread().getName()
    rlock.release()
    time.sleep(2)
    
    # 第二次释放锁
    print '%s release lock...' % threading.currentThread().getName()
    rlock.release()
 
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()

3.4. Condition

Condition(条件变量)通常与一个锁关联。需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。

可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于状态图中的等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。

构造方法:
Condition([lock/rlock])

实例方法:
acquire([timeout])/release(): 调用关联的锁的相应方法。
wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。
notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。
notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

例子是很常见的生产者/消费者模式:


# encoding: UTF-8
import threading
import time
 
# 商品
product = None
# 条件变量
con = threading.Condition()
 
# 生产者方法
def produce():
  global product
  
  if con.acquire():
    while True:
      if product is None:
        print 'produce...'
        product = 'anything'
        
        # 通知消费者,商品已经生产
        con.notify()
      
      # 等待通知
      con.wait()
      time.sleep(2)
 
# 消费者方法
def consume():
  global product
  
  if con.acquire():
    while True:
      if product is not None:
        print 'consume...'
        product = None
        
        # 通知生产者,商品已经没了
        con.notify()
      
      # 等待通知
      con.wait()
      time.sleep(2)
 
t1 = threading.Thread(target=produce)
t2 = threading.Thread(target=consume)
t2.start()
t1.start()

3.5. Semaphore/BoundedSemaphore

Semaphore(信号量)是计算机科学史上最古老的同步指令之一。Semaphore管理一个内置的计数器,每当调用acquire()时-1,调用release() 时+1。计数器不能小于0;当计数器为0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。

基于这个特点,Semaphore经常用来同步一些有“访客上限”的对象,比如连接池。

BoundedSemaphore 与Semaphore的唯一区别在于前者将在调用release()时检查计数器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。

构造方法:
Semaphore(value=1): value是计数器的初始值。

实例方法:
acquire([timeout]): 请求Semaphore。如果计数器为0,将阻塞线程至同步阻塞状态;否则将计数器-1并立即返回。
release(): 释放Semaphore,将计数器+1,如果使用BoundedSemaphore,还将进行释放次数检查。release()方法不检查线程是否已获得 Semaphore。


# encoding: UTF-8
import threading
import time
 
# 计数器初值为2
semaphore = threading.Semaphore(2)
 
def func():
  
  # 请求Semaphore,成功后计数器-1;计数器为0时阻塞
  print '%s acquire semaphore...' % threading.currentThread().getName()
  if semaphore.acquire():
    
    print '%s get semaphore' % threading.currentThread().getName()
    time.sleep(4)
    
    # 释放Semaphore,计数器+1
    print '%s release semaphore' % threading.currentThread().getName()
    semaphore.release()
 
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t4 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()
t4.start()
 
time.sleep(2)
 
# 没有获得semaphore的主线程也可以调用release
# 若使用BoundedSemaphore,t4释放semaphore时将抛出异常
print 'MainThread release semaphore without acquire'
semaphore.release()

3.6. Event

Event(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 False。wait()将阻塞线程至等待阻塞状态。

Event其实就是一个简化版的 Condition。Event没有锁,无法使线程进入同步阻塞状态。

构造方法:
Event()

实例方法:
isSet(): 当内置标志为True时返回True。
set(): 将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。
clear(): 将标志设为False。
wait([timeout]): 如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()。


# encoding: UTF-8
import threading
import time
 
event = threading.Event()
 
def func():
  # 等待事件,进入等待阻塞状态
  print '%s wait for event...' % threading.currentThread().getName()
  event.wait()
  
  # 收到事件后进入运行状态
  print '%s recv event.' % threading.currentThread().getName()
 
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t1.start()
t2.start()
 
time.sleep(2)
 
# 发送事件通知
print 'MainThread set event.'
event.set()

3.7. Timer

Timer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。

构造方法:
Timer(interval, function, args=[], kwargs={})
interval: 指定的时间
function: 要执行的方法
args/kwargs: 方法的参数

实例方法:
Timer从Thread派生,没有增加实例方法。


# encoding: UTF-8
import threading
 
def func():
  print 'hello timer!'
 
timer = threading.Timer(5, func)
timer.start()

3.8. local

local是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。

可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。


# encoding: UTF-8
import threading
 
local = threading.local()
local.tname = 'main'
 
def func():
  local.tname = 'notmain'
  print local.tname
 
t1 = threading.Thread(target=func)
t1.start()
t1.join()
 
print local.tname

熟练掌握Thread、Lock、Condition就可以应对绝大多数需要使用线程的场合,某些情况下local也是非常有用的东西。本文的最后使用这几个类展示线程基础中提到的场景:


# encoding: UTF-8
import threading
 
alist = None
condition = threading.Condition()
 
def doSet():
  if condition.acquire():
    while alist is None:
      condition.wait()
    for i in range(len(alist))[::-1]:
      alist[i] = 1
    condition.release()
 
def doPrint():
  if condition.acquire():
    while alist is None:
      condition.wait()
    for i in alist:
      print i,
    print
    condition.release()
 
def doCreate():
  global alist
  if condition.acquire():
    if alist is None:
      alist = [0 for i in range(10)]
      condition.notifyAll()
    condition.release()
 
tset = threading.Thread(target=doSet,name='tset')
tprint = threading.Thread(target=doPrint,name='tprint')
tcreate = threading.Thread(target=doCreate,name='tcreate')
tset.start()
tprint.start()
tcreate.start()

以上就是关于Python线程指南的相关资料,希望大家以后多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python线程指南详细介绍

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python线程指南详细介绍

本文介绍了Python对于线程的支持,包括“学会”多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例。 注意:本文基于Python2.4完成,;如果看到不明白的词汇请记得百度谷歌或维基,whatever。 1. 线程
2022-06-04

Python Socket编程详细介绍

在使用Python做socket编程时,由于需要使用阻塞(默认)的方式来读取数据流,此时对于数据的结束每次都需要自己处理,太麻烦。并且网上也没找到太好的封装,所以就自己写了个简单的封装。 封装思路 1. 客户端每次请求均发送一个 Socke
2022-06-04

canvas属性的详细介绍和使用指南

canvas属性汇总及应用指南一、简介Canvas 是 HTML5 提供的一个用于绘制图形的元素,它可以在浏览器中动态绘制图形,创建动画效果,并且可以与其他 HTML 元素进行交互。Canvas 元素拥有众多属性,本文将对常用的 Canv
canvas属性的详细介绍和使用指南
2024-01-17

Win7搜索功能使用指南详细图文介绍

相比与XP的“简陋”、“粗糙&rwww.cppcns.comdquo;,Win7可谓是功能全面,界面华丽,最突出的就是它各种贴心的人性化小设置,令人爱不释手。相比Win7中的搜索功能,很多人已经体会到它的
2023-05-26

C语言指针详细介绍

本篇内容主要讲解“C语言指针详细介绍”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C语言指针详细介绍”吧!指针对于C来说太重要。然而,想要全面理解指针,除了要对C语言有熟练的掌握外,还要有计算机
2023-06-15

Python 模块EasyGui详细介绍

Python 模块EasyGui详细介绍 前言: 在Windows想用Python开发一些简单的界面,所以找到了很容易上手的EasyGui库。下面就分享一下简单的使用吧。 参考的链接:官网Tutorial 接下来,我将从简单,到复杂一点点的
2022-06-04

C语言指针的详细介绍

这篇文章主要介绍“C语言指针的详细介绍”,在日常操作中,相信很多人在C语言指针的详细介绍问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C语言指针的详细介绍”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!目录
2023-06-20

注册阿里云ECS账号 详细介绍与步骤指南

随着云计算技术的普及,越来越多的企业和个人选择使用阿里云的ECS(ElasticComputeService)来满足自己的计算需求。本文将详细介绍如何注册阿里云ECS账号,包括注册步骤、注意事项以及如何使用ECS。正文:注册阿里云ECS账号的步骤如下:访问阿里云官网:首先,你需要在浏览器中输入阿里云的官方网站,网
注册阿里云ECS账号 详细介绍与步骤指南
2023-10-31

Android入门:多线程断点下载详细介绍

本案例在于实现文件的多线程断点下载,即文件在下载一部分中断后,可继续接着已有进度下载,并通过进度条显示进度。也就是说在文件开始下载的同时,自动创建每个线程的下载进度的本地文件,下载中断后,重新进入应用点击下载,程序检查有没有本地文件的存在,
2022-06-06

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录