我的编程空间,编程开发者的网络收藏夹
学习永远不晚

pytorch模型转onnx模型的方法详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

pytorch模型转onnx模型的方法详解

学习目标

1.掌握pytorch模型转换到onnx模型

2.顺利运行onnx模型

3.比对onnx模型和pytorch模型的输出结果

学习大纲

  • pytorch模型转换onnx模型
  • 运行onnx模型
  • onnx模型输出与pytorch模型比对

学习内容

前提条件:需要安装onnx 和 onnxruntime,可以通过 pip install onnx 和 pip install onnxruntime 进行安装

1 . pytorch 转 onnx

pytorch 转 onnx 只需要一个函数 torch.onnx.export

torch.onnx.export(model, args, path, export_params, verbose, input_names, output_names, do_constant_folding, dynamic_axes, opset_version)

参数说明:

  • model——需要导出的pytorch模型
  • args——模型的输入参数,满足输入层的shape正确即可。
  • path——输出的onnx模型的位置。例如‘yolov5.onnx’。
  • export_params——输出模型是否可训练。default=True,表示导出trained model,否则untrained。
  • verbose——是否打印模型转换信息。default=False。
  • input_names——输入节点名称。default=None。
  • output_names——输出节点名称。default=None。
  • do_constant_folding——是否使用常量折叠(不了解),默认即可。default=True。
  • dynamic_axes——模型的输入输出有时是可变的,如Rnn,或者输出图像的batch可变,可通过该参数设置。如输入层的shape为(b,3,h,w),batch,height,width是可变的,但是chancel是固定三通道。
    格式如下 :
    1)仅list(int) dynamic_axes={‘input’:[0,2,3],‘output’:[0,1]}
    2)仅dict<int, string> dynamic_axes={‘input’:{0:‘batch’,2:‘height’,3:‘width’},‘output’:{0:‘batch’,1:‘c’}}
    3)mixed dynamic_axes={‘input’:{0:‘batch’,2:‘height’,3:‘width’},‘output’:[0,1]}
  • opset_version——opset的版本,低版本不支持upsample等操作。
import torch
import torch.nn
import onnx

model = torch.load('best.pt')
model.eval()

input_names = ['input']
output_names = ['output']

x = torch.randn(1,3,32,32,requires_grad=True)

torch.onnx.export(model, x, 'best.onnx', input_names=input_names, output_names=output_names, verbose='True')

2 . 运行onnx模型

检查onnx模型,并使用onnxruntime运行。

import onnx
import onnxruntime as ort

model = onnx.load('best.onnx')
onnx.checker.check_model(model)

session = ort.InferenceSession('best.onnx')
x=np.random.randn(1,3,32,32).astype(np.float32)  # 注意输入type一定要np.float32!!!!!
# x= torch.randn(batch_size,chancel,h,w)


outputs = session.run(None,input = { 'input' : x })

参数说明:

  • output_names: default=None
    用来指定输出哪些,以及顺序
    若为None,则按序输出所有的output,即返回[output_0,output_1]
    若为[‘output_1’,‘output_0’],则返回[output_1,output_0]
    若为[‘output_0’],则仅返回[output_0:tensor]
  • input:dict
    可以通过session.get_inputs().name获得名称
    其中key值要求与torch.onnx.export中设定的一致

3.onnx模型输出与pytorch模型比对

import numpy as np
np.testing.assert_allclose(torch_result[0].detach().numpu(),onnx_result,rtol=0.0001)

如前所述,经验表明,ONNX 模型的运行效率明显优于原 PyTorch 模型,这似乎是源于 ONNX 模型生成过程中的优化,这也导致了模型的生成过程比较耗时,但整体效率依旧可观。

此外,根据对 ONNX 模型和 PyTorch 模型运行结果的统计分析(误差的均值和标准差),可以看出 ONNX 模型的运行结果误差很小、基本可靠。

内容参考:https://zhuanlan.zhihu.com/p/422290231

总结

到此这篇关于pytorch模型转onnx模型的文章就介绍到这了,更多相关pytorch模型转onnx模型内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

pytorch模型转onnx模型的方法详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

PyTorch模型转换为ONNX格式实现过程详解

这篇文章主要为大家介绍了PyTorch模型转换为ONNX格式实现过程详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-17

Pytorch模型微调fine-tune详解

微调(fine-tune)通过使用在大数据上得到的预训练好的模型来初始化自己的模型权重,从而提升精度,这篇文章主要介绍了Pytorch模型微调(fine-tune),需要的朋友可以参考下
2023-01-04

pytorch实践线性模型3d详解

这篇文章主要介绍了pytorch实践线性模型3d详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-05-15

PyTorch模型保存与加载的方法

这篇文章主要介绍了PyTorch模型保存与加载的方法的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇PyTorch模型保存与加载的方法文章都会有所收获,下面我们一起来看看吧。state_dict 是一个Pytho
2023-06-30

Pytorch复现扩散模型的示例详解

这篇文章主要为大家详细介绍了如何利用Pytorch复现扩散模型,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的可以跟随小编一起了解一下
2023-05-17

PyTorch模型转TensorRT是怎么实现的?

转换步骤概览准备好模型定义文件(.py文件)准备好训练完成的权重文件(.pth或.pth.tar)安装onnx和onnxruntime将训练好的模型转换为.onnx格式安装tensorRT环境参数ubuntu-18.04 PyTorch-1
2022-06-02

pytorch实现模型剪枝的操作方法

PyTorch提供了内置剪枝API,也支持了一些非结构化和结构化剪枝方法,但是API比较混乱,对应文档描述也不清晰,所以后面我还会结合微软的开源nni工具来实现模型剪枝功能,这篇文章主要介绍了pytorch实现模型剪枝,需要的朋友可以参考下
2023-02-24

pytorch模型的保存加载与续训练详解

这篇文章主要为大家介绍了pytorch模型的保存加载与续训练详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-11-13

一文详解如何实现PyTorch模型编译

这篇文章主要为大家介绍了如何实现PyTorch 模型编译详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-17

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录