我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Pandas数据集的分块读取的实现

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Pandas数据集的分块读取的实现

所谓“分块”,顾名思义,就是将数据集分成几块进行读取,比如有105条数据,一次读取10条,读取11次才能全部读完。以下提供两种分块读取的方法,两种方法各有优劣。

一、直接用分块方式读取数据集文件(更直接)

分块读取数据集文件是指用read_xxx()方法读取存储数据的文件时采用分块的方式,这里以.csv文件为例,在read_csv()中加入chunksize参数即可实现分块读取:

reader = pd.read_csv('某招聘网站数据.csv', usecols = ['positionId', 'companyId', 'positionName', 'skillLables'],
                     chunksize=10)

此时,返回的reader不是DataFrame,而是一个可迭代对象(iteration),需要注意的是,这个可迭代对象不能用下标访问。 下面遍历这个对象:

for r in reader:
    print(r)

遍历结果如下图所示:

这种分块读取方式比较直接,但是由于一开始就定义了分块大小,后续处理起来不够灵活。因此提供了第二种读取方法。

二、先将数据集读取为可迭代对象,再分块读取(更灵活)

 这种方法将数据集文件读取为时可迭代对象不定义分块,用分块的方式读取read_csv()方法返回的可迭代对象。实现第一步要在read_csv()方法中指定参数iterator为True:

reader = pd.read_csv('某招聘网站数据.csv', usecols = ['positionId', 'companyId', 'positionName'],
                    iterator=True)

以下是用分块方式遍历reader,注意使用到的get_chunk()方法和里面的参数,参数定义分块大小,可以灵活调节:

while True:
    try:
        print(reader.get_chunk(10))
    except StopIteration:
        break

总结

综上所述,两种方法都能用pandas实现数据的分块读取,对于数据量较大的数据集还是比较实用的。两种方法的优劣体现在直接性和灵活性上,可以根据实际需求自行选择。

到此这篇关于Pandas数据集的分块读取的实现的文章就介绍到这了,更多相关Pandas数据集分块读取内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Pandas数据集的分块读取的实现

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Pandas读取csv的实现

本文主要介绍了Pandas读取csv的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-01-15

Python Pandas模块实现数据的统计分析的方法

一、groupby函数 Python中的groupby函数,它主要的作用是进行数据的分组以及分组之后的组内的运算,也可以用来探索各组之间的关系,首先我们导入我们需要用到的模块import pandas as pd首先导入我们所需要用到的数据
2022-06-02

利用pandas读取Excel文件,轻松实现数据导入与分析

利用pandas读取Excel文件,轻松实现数据导入与分析pandas是Python中用于数据分析的强大工具,它可以对各种格式的数据进行灵活高效的处理。在数据分析中,Excel是一种常用的数据格式,pandas提供了方便的接口,使得我们可
利用pandas读取Excel文件,轻松实现数据导入与分析
2024-01-19

Pandas数据查询的集中实现方法

本文主要介绍了Pandas数据查询的集中实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-02-27

Pandas数据查询的集中如何实现

今天小编给大家分享一下Pandas数据查询的集中如何实现的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。Pandas查询数据的
2023-07-05

pytorch读取自制数据集的示例分析

小编给大家分享一下pytorch读取自制数据集的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!问题1问题描述:TypeError: default_col
2023-06-15

redis 亿级数据读取的实现

目录引言Redis 的基础特性亿级数据读取策略1. 分片与集群2. 使用管道(Pipeline)3. 批量读取(MGET、HGETALL)4. 数据分页5. 读写分离实战案例分析场景描述解决方案结论引言随着数据量的爆炸式增长,如何在亿级数
redis 亿级数据读取的实现
2024-08-09

pandas数据聚合与分组运算的实现

本文主要介绍了pandas数据聚合与分组运算的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-01-28

python中Pandas读取数据文件的优点是什么

这篇文章给大家分享的是有关python中Pandas读取数据文件的优点是什么的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。1、优点Pandas 提供了多种常用文件格式的读写函数,以上各种情况都能一行代码搞定。Pa
2023-06-15

Python读取CSV数据的实用技巧分享

python 中读取 csv 数据的方法分两种:内置 csv 模块,适用于小型 csv 文件,按行迭代数据;pandas 库,提供 read_csv() 函数,可轻松将 csv 数据加载到 dataframe 中进行处理。Python 读取
Python读取CSV数据的实用技巧分享
2024-04-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录