我的编程空间,编程开发者的网络收藏夹
学习永远不晚

PyTorch中grid_sample的使用及说明

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

PyTorch中grid_sample的使用及说明

关于grid_sample的使用

grid_sample底层是应用双线性插值,把输入的tensor转换为指定大小。

那它和interpolate有啥区别呢?

interpolate是规则采样(uniform),但是grid_sample的转换方式,内部采点的方式并不是规则的,是一种更为灵活的方式。

torch.nn.functional.grid_sample(input, grid, mode=‘bilinear', padding_mode=‘zeros')
  • input:输入tensor, shape为 [N, C, H_in, W_in]
  • grid:一个field flow, shape为[N, H_out, W_out, 2],最后一个维度是每个grid(H_out_i, W_out_i)在input的哪个位置的邻域去采点。数值范围被归一化到[-1,1]。

下面将介绍具体的例子

import torch
from torch.nn import functional as F


inp = torch.ones(1, 1, 4, 4)

# 目的是得到一个 长宽为20的tensor
out_h = 20
out_w = 20
 # grid的生成方式等价于用mesh_grid
new_h = torch.linspace(-1, 1, out_h).view(-1, 1).repeat(1, out_w)
new_w = torch.linspace(-1, 1, out_w).repeat(out_h, 1)
grid = torch.cat((new_h.unsqueeze(2), new_w.unsqueeze(2)), dim=2)
grid = grid.unsqueeze(0)

outp = F.grid_sample(inp, grid=grid, mode='bilinear')
print(outp.shape)  #torch.Size([1, 1, 20, 20])

在上面的例子中,我们将一个大小为4x4的tensor 转换为了一个20x20的。

grid的大小指定了输出大小,每个grid的位置是一个(x,y)坐标,其值来自于:输入input的(x,y)中 的四邻域插值得到的。

在这里插入图片描述

图片来自于SFnet(eccv2020)。flow field是grid, low_resolution是input, high resolution是output。

至于grid的值是控制在-1,1的。那如何对应在input上呢。

这个来看一下pytorch的底层源码。

第66行到71行,获取到了grid的x和y,之后对其做了新的变换,变到input的坐标系下了。

IW和IH是input的宽和高。

        real ix = THTensor_fastGet4d(grid, n, h, w, 0);
        real iy = THTensor_fastGet4d(grid, n, h, w, 1);

        // normalize ix, iy from [-1, 1] to [0, IH-1] & [0, IW-1]
        ix = ((ix + 1) / 2) * (IW-1);
        iy = ((iy + 1) / 2) * (IH-1);

torch.nn.functional.grid_sample() 注意点

用法: 主要用于采样,一般是使用bilinear根据grid的坐标采样

F.grid_sample(img, grid, align_corners=True)
  • img是采样的空间,grid是生成的网格坐标。
  • grid通常由torch.meshgrid()生成,且要映射到(-1,1)之间,如:
dx = torch.linspace(-1,1, 9)
dy = torch.linspace(-1, 1,7)
coords = torch.stack(torch.meshgrid(dy, dx), axis=-1)   #[dy*dx*2]

输入输出情况:

假如是4D 的input:

img.shape : [B,C,H_in,W_in]
grid.shape: [B,H_out,W_out,2]
out: [B,C,H_out,W_out]

细节

1.为什么meshgrid生成坐标的时候,stack成coords时需要逆序(第一层是y,第二层是x)?

Ans:采样的时候,在img上取点,坐标是根据grid来的,grid[:,:,0]是W维度的坐标,grid[:,:,1]是H维度的坐标,所以这个地方需要注意,是反过来的

2.grid的形状仅仅影响output的形状,直接决定取点的还是坐标,所以尤其要注意grid坐标叠。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

PyTorch中grid_sample的使用及说明

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

PyTorch中grid_sample的使用及说明

这篇文章主要介绍了PyTorch中grid_sample的使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-02-01

Pytorch-Geometric中的Message Passing使用及说明

这篇文章主要介绍了Pytorch-Geometric中的Message Passing使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2022-12-17

Pytorch中torch.cat()函数的使用及说明

这篇文章主要介绍了Pytorch中torch.cat()函数的使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-01-03

Pytorch中torch.repeat_interleave()函数使用及说明

这篇文章主要介绍了Pytorch中torch.repeat_interleave()函数使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-01-03

Pytorch中torch.argmax()函数使用及说明

这篇文章主要介绍了Pytorch中torch.argmax()函数使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-01-03

pytorch中retain_graph==True的作用说明

这篇文章主要介绍了pytorch中retain_graph==True的作用说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-02-21

js中的WebSocket使用及说明

WebSocket是一种实时、低延迟的通信协议,允许客户端与服务器之间双向数据交换,弥补了传统HTTP请求-响应模型的局限性。它具有实时通信、低延迟、双向通信和低开销的优点,广泛用于聊天、实时数据流、多人游戏、物联网和协作工具等应用场景。要使用WebSocket,需要建立连接,收发消息,并使用API管理连接,包括open、send、close、onmessage、onerror等方法和事件。
js中的WebSocket使用及说明
2024-04-02

vue3中Vant的使用及说明

这篇文章主要介绍了vue3中Vant的使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-01-16

C#中Stopwatch的使用及说明

这篇文章主要介绍了C#中Stopwatch的使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-02-25

Keras中Conv1D的使用及说明

这篇文章主要介绍了Keras中Conv1D的使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2022-12-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录