我的编程空间,编程开发者的网络收藏夹
学习永远不晚

【pytorch】torch.cdist使用说明

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

【pytorch】torch.cdist使用说明

torch.cdist的使用介绍如官网所示,

在这里插入图片描述

它是批量计算两个向量集合的距离。

其中, x1和x2是输入的两个向量集合。

p 默认为2,为欧几里德距离。

它的功能上等同于 scipy.spatial.distance.cdist(input,’minkowski’, p=p)

如果x1的shape是 [B,P,M], x2的shape是[B,R,M],则cdist的结果shape是 [B,P,R]

x1一般是输入矢量,而x2一般是码本。

x2中所有的元素分别与x1中的每一个元素求欧几里德距离(当p默认为2时)

如下面示例

import torchx1 = torch.FloatTensor([0.1, 0.2, 0, 0.5]).view(4, 1)x2 = torch.FloatTensor([0.2, 0.3]).view(2, 1)print(torch.cdist(x1,x2))

x2中的所有元素分别与x1中的每一个元素求欧几里德距离,即有如下步骤

x 11 = ( 0.1 − 0.2 ) 2 =0.1 x 12 = ( 0.1 − 0.3 ) 2 =0.2 x 21 = ( 0.2 − 0.2 ) 2 =0 x 22 = ( 0.2 − 0.3 ) 2 =0.1 x 31 = ( 0 − 0.2 ) 2 =0.2 x 32 = ( 0 − 0.3 ) 2 =0.3 x 41 = ( 0.5 − 0.2 ) 2 =0.3 x 42 = ( 0.5 − 0.3 ) 2 =0.2 x_{11} = \sqrt{ (0.1-0.2)^2} = 0.1 \newline x_{12} = \sqrt { (0.1-0.3)^2} = 0.2 \newline x_{21} = \sqrt { (0.2-0.2)^2} = 0 \newline x_{22} = \sqrt { (0.2-0.3)^2} = 0.1 \newline x_{31} = \sqrt { (0-0.2)^2} = 0.2 \newline x_{32} = \sqrt { (0-0.3)^2} = 0.3 \newline x_{41} = \sqrt { (0.5-0.2)^2 } =0.3\newline x_{42} = \sqrt { (0.5-0.3)^2 } = 0.2\newline x11=(0.10.2)2 =0.1x12=(0.10.3)2 =0.2x21=(0.20.2)2 =0x22=(0.20.3)2 =0.1x31=(00.2)2 =0.2x32=(00.3)2 =0.3x41=(0.50.2)2 =0.3x42=(0.50.3)2 =0.2

所以运行结果为
在这里插入图片描述

如下面示例

import torchx1 = torch.FloatTensor([0.1, 0.2, 0.1, 0.5, 0.2, -0.9, 0.8, 0.4]).view(4, 2)x2 = torch.FloatTensor([0.2, 0.3, 0, 0.1]).view(2, 2)print(torch.cdist(x1,x2))

x1和x2数据是二维的,
在这里插入图片描述

x2中的所有元素分别与x1中的每一个元素求欧几里德距离,即有如下步骤

x 11 = ( 0.1 − 0.2 ) 2 + ( 0.2 − 0.3 ) 2 = 0.02 =0.1414 x 12 = ( 0.1 − 0.0 ) 2 + ( 0.2 − 0.1 ) 2 = 0.02 =0.1414 x 21 = ( 0.1 − 0.2 ) 2 + ( 0.5 − 0.3 ) 2 = 0.05 =0.2236 x 22 = ( 0.1 − 0.0 ) 2 + ( 0.5 − 0.1 ) 2 = 0.17 =0.4123 x 31 = ( 0.2 − 0.2 ) 2 + ( − 0.9 − 0.3 ) 2 =1.2 x 32 = ( 0.2 − 0.0 ) 2 + ( − 0.9 − 0.1 ) 2 = ( 1.04)=1.0198 x 41 = ( 0.8 − 0.2 ) 2 + ( 0.4 − 0.3 ) 2 = ( 0.37)=0.6083 x 42 = ( 0.8 − 0.0 ) 2 + ( 0.4 − 0.1 ) 2 = ( 0.73)=0.8544 x_{11} = \sqrt{ (0.1-0.2)^2 + (0.2-0.3)^2 } = \sqrt{0.02} = 0.1414 \newline x_{12} = \sqrt { (0.1-0.0)^2 + (0.2-0.1)^2 } = \sqrt{0.02} = 0.1414 \newline x_{21} = \sqrt { (0.1-0.2)^2 + (0.5-0.3)^2 } = \sqrt{0.05} = 0.2236 \newline x_{22} = \sqrt { (0.1-0.0)^2 + (0.5-0.1)^2 } = \sqrt{0.17} = 0.4123 \newline x_{31} = \sqrt { (0.2-0.2)^2 + (-0.9-0.3)^2} = 1.2 \newline x_{32} = \sqrt { (0.2-0.0)^2 + (-0.9-0.1)^2} = \sqrt(1.04) = 1.0198 \newline x_{41} = \sqrt { (0.8-0.2)^2 + (0.4-0.3)^2 } = \sqrt(0.37) = 0.6083 \newline x_{42} = \sqrt { (0.8-0.0)^2 + (0.4-0.1)^2 } = \sqrt(0.73) = 0.8544 \newline x11=(0.10.2)2+(0.20.3)2 =0.02 =0.1414x12=(0.10.0)2+(0.20.1)2 =0.02 =0.1414x21=(0.10.2)2+(0.50.3)2 =0.05 =0.2236x22=(0.10.0)2+(0.50.1)2 =0.17 =0.4123x31=(0.20.2)2+(0.90.3)2 =1.2x32=(0.20.0)2+(0.90.1)2 =( 1.04)=1.0198x41=(0.80.2)2+(0.40.3)2 =( 0.37)=0.6083x42=(0.80.0)2+(0.40.1)2 =( 0.73)=0.8544

所以结果如下

在这里插入图片描述

p=2的欧几里德距离也是L2范式,如果p=1即是L1范式
上面的例子修改一下p参数

import torchx1 = torch.FloatTensor([0.1, 0.2, 0.1, 0.5, 0.2, -0.9, 0.8, 0.4]).view(4, 2)x2 = torch.FloatTensor([0.2, 0.3, 0, 0.1]).view(2, 2)print(torch.cdist(x1,x2,p=1))

结果如下,这里就不一个一个运算了。
在这里插入图片描述

来源地址:https://blog.csdn.net/mimiduck/article/details/128886148

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

【pytorch】torch.cdist使用说明

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

PyTorch中grid_sample的使用及说明

这篇文章主要介绍了PyTorch中grid_sample的使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-02-01

Pytorch中torch.repeat_interleave()函数使用及说明

这篇文章主要介绍了Pytorch中torch.repeat_interleave()函数使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-01-03

Pytorch中torch.argmax()函数使用及说明

这篇文章主要介绍了Pytorch中torch.argmax()函数使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-01-03

Pytorch-Geometric中的Message Passing使用及说明

这篇文章主要介绍了Pytorch-Geometric中的Message Passing使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2022-12-17

Pytorch中torch.cat()函数的使用及说明

这篇文章主要介绍了Pytorch中torch.cat()函数的使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-01-03

pytorch中retain_graph==True的作用说明

这篇文章主要介绍了pytorch中retain_graph==True的作用说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-02-21

PyTorch常用函数torch.cat()中dim参数使用说明

这篇文章主要为大家介绍了PyTorch常用函数torch.cat()中dim参数使用说明,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-17

window.dialogArguments 使用说明

window.dialogArguments 使用说明,需要的朋友可以参考下。
2022-11-21

z3py使用说明

http://z3prover.github.io/api/html/z3.html http://www.cs.tau.ac.il/~msagiv/courses/asv/z3py/guide-examples.htm 学习
2023-01-31

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录