我的编程空间,编程开发者的网络收藏夹
学习永远不晚

如何用Python实时监控

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

如何用Python实时监控

这期内容当中小编将会给大家带来有关如何用Python实时监控,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

最近突然有个奇妙的想法,就是当我对着电脑屏幕的时候,电脑会先识别屏幕上的人脸是否是本人,如果识别是本人的话需要回答电脑说的暗语,答对了才会解锁并且有三次机会。如果都没答对就会发送邮件给我,通知有人在动我的电脑并上传该人头像。

过程

环境是win10代码我使用的是python3所以在开始之前需要安装一些依赖包,请按顺序安装否者会报错

pip install cmake -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install dlib -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install face_recognition -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

接下来是构建识别人脸以及对比人脸的代码

import face_recognition
import cv2
import numpy as np

video_capture = cv2.VideoCapture(0)
my_image = face_recognition.load_image_file("my.jpg")
my_face_encoding = face_recognition.face_encodings(my_image)[0]
known_face_encodings = [
    my_face_encoding
]
known_face_names = [
    "Admin"
]

face_names = []
face_locations = []
face_encodings = []
process_this_frame = True

while True:
    ret, frame = video_capture.read()
    small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    rgb_small_frame = small_frame[:, :, ::-1]
    if process_this_frame:
        face_locations = face_recognition.face_locations(rgb_small_frame)
        face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
        face_names = []
        for face_encoding in face_encodings:
            matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
            name = "Unknown"
            face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
            best_match_index = np.argmin(face_distances)
            if matches[best_match_index]:
                name = known_face_names[best_match_index]
            face_names.append(name)

    process_this_frame = not process_this_frame
    for (top, right, bottom, left), name in zip(face_locations, face_names):
        top *= 4
        left *= 4
        right *= 4
        bottom *= 4
        font = cv2.FONT_HERSHEY_DUPLEX
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
        cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
        cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)

    cv2.imshow('Video', frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

video_capture.release()
cv2.destroyAllWindows()

其中my.jpg需要你自己拍摄上传,运行可以发现在你脸上会出现Admin的框框,我去网上找了张图片类似这样子

如何用Python实时监控

识别功能已经完成了接下来就是语音识别和语音合成,这需要使用到百度AI来实现了,去登录百度AI的官网到控制台选择左边的语音技术,然后点击面板的创建应用按钮,来到创建应用界面

如何用Python实时监控

打造电脑版人脸屏幕解锁神器

创建后会得到AppID、API Key、Secret Key记下来,然后开始写语音合成的代码。安装百度AI提供的依赖包

pip install baidu-aip -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install playsound -i https://pypi.tuna.tsinghua.edu.cn/simple

然后是简单的语音播放代码,运行下面代码可以听到萌妹子的声音

import sys
from aip import AipSpeech
from playsound import playsound

APP_ID = ''
API_KEY = ''
SECRET_KEY = ''

client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
result = client.synthesis('你好吖', 'zh', 1, {'vol': 5, 'per': 4, 'spd': 5, })

if not isinstance(result, dict):
    with open('auido.mp3', 'wb') as file:
        file.write(result)

filepath = eval(repr(sys.path[0]).replace('\\', '/')) + '//auido.mp3'
playsound(filepath)

有了上面的代码就完成了检测是否在电脑前(人脸识别)以及电脑念出暗语(语音合成)然后我们还需要回答暗号给电脑,所以还需要完成语音识别。

import wave
import pyaudio
from aip import AipSpeech

APP_ID = ''
API_KEY = ''
SECRET_KEY = ''

client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 8000
RECORD_SECONDS = 3
WAVE_OUTPUT_FILENAME = "output.wav"

p = pyaudio.PyAudio()
stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK)

print("* recording")
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
    data = stream.read(CHUNK)
    frames.append(data)
print("* done recording")

stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))def get_file_content():
    with open(WAVE_OUTPUT_FILENAME, 'rb') as fp:
        return fp.read()result = client.asr(get_file_content(), 'wav', 8000, {'dev_pid': 1537, })
print(result)

运行此代码之前需要安装pyaudio依赖包,由于在win10系统上安装会报错所以可以通过如下方式安装。到这个链接 https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyaudio 去下载对应的安装包然后安装即可。

如何用Python实时监控

运行后我说了你好,可以看到识别出来了。那么我们的小模块功能就都做好了接下来就是如何去整合它们。可以发现在人脸识别代码中if matches[best_match_index]这句判断代码就是判断是否为电脑主人,所以我们把这个判断语句当作main函数的入口。

if matches[best_match_index]:
    # 在这里写识别到之后的功能
    name = known_face_names[best_match_index]

那么识别到后我们应该让电脑发出询问暗号,也就是语音合成代码,然我们将它封装成一个函数,顺便重构下人脸识别的代码。

import cv2
import time
import numpy as np
import face_recognition

video_capture = cv2.VideoCapture(0)
my_image = face_recognition.load_image_file("my.jpg")
my_face_encoding = face_recognition.face_encodings(my_image)[0]
known_face_encodings = [
    my_face_encoding
]
known_face_names = [
    "Admin"
]

face_names = []
face_locations = []
face_encodings = []
process_this_frame = Truedef speak(content):
    import sys
    from aip import AipSpeech
    from playsound import playsound
    APP_ID = ''
    API_KEY = ''
    SECRET_KEY = ''
    client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
    result = client.synthesis(content, 'zh', 1, {'vol': 5, 'per': 0, 'spd': 5, })
    if not isinstance(result, dict):
        with open('auido.mp3', 'wb') as file:
            file.write(result)
    filepath = eval(repr(sys.path[0]).replace('\\', '/')) + '//auido.mp3'
    playsound(filepath)try:
    while True:
        ret, frame = video_capture.read()
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
        rgb_small_frame = small_frame[:, :, ::-1]
        if process_this_frame:
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
            face_names = []
            for face_encoding in face_encodings:
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    speak("识别到人脸,开始询问暗号,请回答接下来我说的问题")
                    time.sleep(1)
                    speak("天王盖地虎")
                    error = 1 / 0
                    name = known_face_names[best_match_index]
                face_names.append(name)
        process_this_frame = not process_this_frame
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            top *= 4
            left *= 4
            right *= 4
            bottom *= 4
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)

        cv2.imshow('Video', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
except Exception as e:
    print(e)
finally:
    video_capture.release()
    cv2.destroyAllWindows()

这里有一点需要注意,由于playsound播放音乐的时候会一直占用这个资源,所以播放下一段音乐的时候会报错,解决方法是修改~\Python37\Lib\site-packages下的playsound.py文件,找到如下代码

如何用Python实时监控

在sleep函数下面添加winCommand('close', alias)这句代码,保存下就可以了。运行发现可以正常将两句话都说出来。那么说出来之后就要去监听了,我们还要打包一个函数。

def record():
    import wave
    import json
    import pyaudio
    from aip import AipSpeech

    APP_ID = ''
    API_KEY = ''
    SECRET_KEY = ''

    client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
    CHUNK = 1024
    FORMAT = pyaudio.paInt16
    CHANNELS = 1
    RATE = 8000
    RECORD_SECONDS = 3
    WAVE_OUTPUT_FILENAME = "output.wav"

    p = pyaudio.PyAudio()
    stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK)

    print("* recording")
    frames = []
    for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
        data = stream.read(CHUNK)
        frames.append(data)
    print("* done recording")

    stream.stop_stream()
    stream.close()
    p.terminate()
    wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
    wf.setnchannels(CHANNELS)
    wf.setsampwidth(p.get_sample_size(FORMAT))
    wf.setframerate(RATE)
    wf.writeframes(b''.join(frames))

    def get_file_content():
        with open(WAVE_OUTPUT_FILENAME, 'rb') as fp:
            return fp.read()

    result = client.asr(get_file_content(), 'wav', 8000, {'dev_pid': 1537, })
    result = json.loads(str(result).replace("'", '"'))
    return result["result"][0]

将识别到人脸后的代码修改成如下

if matches[best_match_index]:
    speak("识别到人脸,开始询问暗号,请回答接下来我说的问题")
    time.sleep(1)
    speak("天王盖地虎")

    flag = False
    for times in range(0, 3):
        content = record()
        if "小鸡炖蘑菇" in content:
            speak("暗号通过")
            flag = True
            break
        else:
            speak("暗号不通过,再试一次")
    if flag:
        print("解锁")
    else:
        print("发送邮件并将坏人人脸图片上传!")
    error = 1 / 0
    name = known_face_names[best_match_index]

运行看看效果,回答电脑小鸡炖蘑菇,电脑回答暗号通过。这样功能就基本上完成了。

如何用Python实时监控

结语

至于发送邮件的功能和锁屏解锁的功能我就不一一去实现了,我想这应该难不倒大家的。锁屏功能可以HOOK让键盘时间无效化,然后用窗口再覆盖整个桌面即可,至于邮箱发送网上文章很多的。

上述就是小编为大家分享的如何用Python实时监控了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

如何用Python实时监控

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何用Python实时监控

这期内容当中小编将会给大家带来有关如何用Python实时监控,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。最近突然有个奇妙的想法,就是当我对着电脑屏幕的时候,电脑会先识别屏幕上的人脸是否是本人,如果识别是
2023-06-01

人工智能用Python实时监控

编程学习网:最近突然有个奇妙的想法,就是当我对着电脑屏幕的时候,电脑会先识别屏幕上的人脸是否是本人,如果识别是本人的话需要回答电脑说的暗语,答对了才会解锁并且有三次机会。
人工智能用Python实时监控
2024-04-23

如何实时监控Nginx服务器

本篇内容主要讲解“如何实时监控Nginx服务器”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“如何实时监控Nginx服务器”吧!Linux运维工程师的首要职责就是保证业务7 x 24小时稳定的运行
2023-06-03

CAT分布式实时监控系统如何使用

这篇文章主要讲解了“CAT分布式实时监控系统如何使用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“CAT分布式实时监控系统如何使用”吧!CAT相比于其他组件的优势:CAT分布式实时监控系统是
2023-07-05

如何利用PHP和WebSocket开发实时监控应用

如何利用PHP和WebSocket开发实时监控应用引言:实时监控应用在当今的互联网应用开发中越来越重要。传统的HTTP通信无法实现实时性的需求,而WebSocket协议则能够在浏览器与服务器之间建立长连接,实现实时双向通信。PHP作为一种广
如何利用PHP和WebSocket开发实时监控应用
2023-12-17

如何使用Html5 Stream开发实时监控系统

这篇文章主要介绍如何使用Html5 Stream开发实时监控系统,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!H5Stream在网上搜索web直播/摄像头直播等关键词找到了H5Stream,这是一个可以基于Nativ
2023-06-09

Python利用PsUtil实现实时监控系统状态

PSUtil是一个跨平台的Python库,用于检索有关正在运行的进程和系统利用率(CPU,内存,磁盘,网络,传感器)的信息。本文就来用PsUtil实现实时监控系统状态,感兴趣的可以跟随小编一起学习一下
2023-05-18

如何实时监控Linux服务器性能

这篇文章主要为大家展示了“如何实时监控Linux服务器性能”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“如何实时监控Linux服务器性能”这篇文章吧。简述dstat 是一款生成Linux系统资源
2023-06-15

Linux下如何实时监控日志文件

这篇文章给大家分享的是有关Linux下如何实时监控日志文件的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。如何在Linux中实时查看日志文件的内容?有很多实用工具可以帮助用户在文件修改或不断更新时跟踪或监控文件发生
2023-06-27

Linux中如何实时监控日志文件

这期内容当中小编将会给大家带来有关Linux中如何实时监控日志文件,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。1. tail Command – Monitor Logs in Real T
2023-06-16

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录