FlinkCDC 实时监控 MySQL
通过 FlinkCDC 实现 MySQL 数据库、表的实时变化监控,这里只把变化打印了出来,后面会实现如何再写入其他 MySQL 库中;
1、开启 MySQL 的 binlog
在 my.cnf 中开启 binlog,我这里指定了 test 库,然后重启 MySQL
server.id=1log-bin=mysql-binbinlog-do-db=test
2、在 MySQL 中创建测试库和表
mysql> create database test;mysql> create table user_info(id int unsigned not null auto_increment primary key, username varchar(60), sex tinyint(1), nickname varchar(60), addr varchar(255))ENGINE=InnoDB default charset=utf8mb4;
3、Flink 代码
在 IDEA 中新建工程 flinkcdc
pom.xml
4.0.0 com.zsoft.flinkcdc flinkcdc 1.0-SNAPSHOT 8 8 1.13.1 org.apache.flink flink-java ${flink.version} org.apache.flink flink-streaming-java_2.12 ${flink.version} org.apache.flink flink-clients_2.12 ${flink.version} org.apache.hadoop hadoop-client 3.1.3 mysql mysql-connector-java 8.0.22 com.alibaba.ververica flink-connector-mysql-cdc 1.4.0 com.alibaba fastjson 1.2.75 org.apache.maven.plugins maven-assembly-plugin 3.0.0 jar-with-dependencies make-assembly package single
resources/log4j.properties
log4j.rootLogger=warn,stdoutlog4j.appender.stdout=org.apache.log4j.ConsoleAppenderlog4j.appender.stdout.target=System.outlog4j.appender.stdout.layout=org.apache.log4j.PatternLayoutlog4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
反序列化类:
com/zsoft/flinkcdc/MyDeserializationSchema.java
package com.zsoft.flinkcdc;import com.alibaba.fastjson.JSONObject;import com.alibaba.ververica.cdc.debezium.DebeziumDeserializationSchema;import io.debezium.data.Envelope;import org.apache.flink.api.common.typeinfo.TypeInformation;import org.apache.flink.util.Collector;import org.apache.kafka.connect.data.Field;import org.apache.kafka.connect.data.Struct;import org.apache.kafka.connect.source.SourceRecord;public class MyDeserializationSchema implements DebeziumDeserializationSchema { @Override public void deserialize(SourceRecord sourceRecord, Collector collector) throws Exception { Struct valueStruct = (Struct) sourceRecord.value(); Struct sourceStruct = valueStruct.getStruct("source"); // 获取数据库的名称 String database = sourceStruct.getString("db"); // 获取表名 String table = sourceStruct.getString("table"); // 获取类型( c -> insert, u -> update) String type = Envelope.operationFor(sourceRecord).toString().toLowerCase(); if(type.equals("create")){ type = "insert"; } JSONObject jsonObj = new JSONObject(); jsonObj.put("database",database); jsonObj.put("table", table); jsonObj.put("type", type); // 获取数据 data Struct afterStruct = valueStruct.getStruct("after"); JSONObject dataJsonObj = new JSONObject(); if(afterStruct != null) { for(Field field : afterStruct.schema().fields()) { String fieldName = field.name(); Object fieldValue = afterStruct.get(field); dataJsonObj.put(fieldName, fieldValue); } } jsonObj.put("data", dataJsonObj); collector.collect(jsonObj.toJSONString()); } @Override public TypeInformation getProducedType() { return TypeInformation.of(String.class); }}
主类:
com/zsoft/flinkcdc/FlinkCdcDataStream.java
package com.zsoft.flinkcdc;import com.alibaba.ververica.cdc.connectors.mysql.MySQLSource;import com.alibaba.ververica.cdc.connectors.mysql.table.StartupOptions;import com.alibaba.ververica.cdc.debezium.StringDebeziumDeserializationSchema;import org.apache.flink.api.common.restartstrategy.RestartStrategies;import org.apache.flink.runtime.state.filesystem.FsStateBackend;import org.apache.flink.streaming.api.CheckpointingMode;import org.apache.flink.streaming.api.datastream.DataStreamSource;import org.apache.flink.streaming.api.environment.CheckpointConfig;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.functions.source.SourceFunction;import java.util.Properties;public class FlinkCdcDataStream { public static void main(String[] args) throws Exception { // TODO 1. 准备流处理环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); // TODO 2. 开启检查点 // 2.1 开启 Checkpoint env.enableCheckpointing(5000L, CheckpointingMode.EXACTLY_ONCE); // 2.2 设置超时时间 env.getCheckpointConfig().setCheckpointTimeout(60000); // 2.3 指定从 CK 自动重启策略 env.setRestartStrategy(RestartStrategies.fixedDelayRestart(1, 6000L)); // 2.4 设置任务关闭时候保留最后一次 CK 数据 env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); // 2.5 设置状态后端 env.setStateBackend(new FsStateBackend("hdfs://s1:8020/flinkCDC_DS")); // 2.6 设置访问 HDFS 的用户名 System.setProperty("HADOOP_USER_NAME", "hadoop"); // TODO 3. 创建 Flink-MySQL-CDC 的 Source Properties props = new Properties(); props.setProperty("scan.startup.mode", "initial"); SourceFunction sourceFunction = MySQLSource.builder() .hostname("s1") .port(3306) .username("root") .password("123456") .databaseList("test") .tableList("test.user_info") .startupOptions(StartupOptions.earliest()) .debeziumProperties(props) .deserializer(new MyDeserializationSchema()) .build(); // TODO 4. 使用 CDC Source 从 MySQL 读取数据 DataStreamSource mysqlDS = env.addSource(sourceFunction).setParallelism(1); // TODO 5. 打印输出 mysqlDS.print(); // TODO 6. 执行任务 env.execute(); }}
4、打包运行
在 IDEA 中打包项目 package
将生成的 flinkcdc-1.0-SNAPSHOT-jar-with-dependencies.jar 通过 Flink 的 webUI 上传
在 Flink 的 WebUI 中上传 jar 包
Submit New Job 页面点击 + Add New 按钮
上传后的 jar 包下填入:
- Entry Class:com.zsoft.flinkcdc.FlinkCdcDataStream
- Parallelism:1
- Program Arguments:
- Savepoint Path:
点击 ”Submit“ 提交应用
5、测试
此时在 MySQL 中插入如下数据:
mysql> insert into user_info values(null, 'zhangsan', 1, 'zhs','beijing');
mysql> insert into user_info values(null, 'lisi', 1, 'ls','shanghai');
mysql> insert into user_info values(null, 'wangwu', 1, 'ww','wangwu');
在 Flink 的 webUI 中 Task Managers 中点击项目,在 Stdout 中有输出日志:
{"database":"test","data":{"sex":1,"nickname":"zhs","id":1,"addr":"beijing","username":"zhangsan"},"type":"insert","table":"user_info"}{"database":"test","data":{"sex":1,"nickname":"ls","id":2,"addr":"shanghai","username":"lisi"},"type":"insert","table":"user_info"}{"database":"test","data":{"sex":1,"nickname":"ww","id":3,"addr":"wangwu","username":"wangwu"},"type":"insert","table":"user_info"}
来源地址:https://blog.csdn.net/zhy0414/article/details/129692546
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341