我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Pandas中DataFrame数据删除详情

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Pandas中DataFrame数据删除详情

本文介绍PandasDataFrame数据删除,主要使用dropdel方式。


# drop函数的参数解释
drop(
        self,
        labels=None, # 就是要删除的行列的标签,用列表给定;
        axis=0, # axis是指处哪一个轴,0为行(默认),1为列;
        index=None, # index是指某一行或者多行
        columns=None, # columns是指某一列或者多列
        level=None, # level是指等级,针对多重索引的情况;
        inplace=False, # inplaces是否替换原来的dataframe;
        errors="raise",
)
axis=0或者 和 index或columns 指定行列只需要使用一组就行

1.根据默认的行列索引操作

示例数据


import numpy as np
import pandas as pd
# 生成随机数组-5行5列
df = pd.DataFrame(np.random.rand(5,5))
print(df)

数据展示


          0         1         2         3         4
0  0.760489  0.074633  0.788416  0.087612  0.560539
1  0.758450  0.599777  0.384075  0.525483  0.628910
2  0.386808  0.148106  0.742207  0.452627  0.775963
3  0.662909  0.134640  0.186186  0.735429  0.459556
4  0.328694  0.269088  0.331404  0.835388  0.899107

1.1行删除

[1]删除单行


# 删除单行,删除第2行
df.drop(df.index[1],inplace=True) # inplace=True 原地修改
print(df)

执行结果:

          0         1         2         3         4
0  0.605764  0.234973  0.566346  0.598105  0.478153
2  0.383230  0.822174  0.228855  0.743258  0.076701
3  0.875287  0.576668  0.176982  0.341827  0.112582
4  0.205425  0.898544  0.799174  0.000905  0.377990

[2]删除不连续多行


# 删除不连续多行,删除第2和第4行
df.drop(df.index[[1,3]],inplace=True)
print(df)

执行结果:

          0         1         2         3         4
0  0.978612  0.556539  0.781362  0.547527  0.706686
2  0.845822  0.321716  0.444176  0.053915  0.296631
4  0.617735  0.040859  0.129235  0.525116  0.005357

[3]删除连续多行


# 删除连续多行
df.drop(df.index[1:3],inplace=True) # 开区间,最后一个索引号不计算在内
print(df)

执行结果:

          0         1         2         3         4
0  0.072891  0.926297  0.882265  0.971368  0.567840
3  0.163212  0.546069  0.360990  0.494274  0.065744
4  0.752917  0.242112  0.526675  0.918713  0.320725

1.2列删除

列的删除可以使用deldrop两种方式,del df[1] # 删除第2列,该种方式为原地删除,本文具体讲解drop函数删除。

[1]删除指定列


df.drop([1,3],axis=1,inplace=True) # 指定轴为列
# df.drop(columns=[1,3],inplace=True) # 直接指定列

执行结果:

          0         2         4
0  0.592869  0.123369  0.815126
1  0.127064  0.093994  0.332790
2  0.411560  0.118753  0.143854
3  0.965317  0.267740  0.349927
4  0.688604  0.699658  0.932645

[2]删除连续列


df.drop(df.columns[1:3],axis=1,inplace=True) #指定轴
# df.drop(columns=df.columns[1:3],inplace = True) # 指定列
print(df)

执行结果:

          0         3         4
0  0.309674  0.974694  0.660285
1  0.677328  0.969440  0.953452
2  0.954114  0.953569  0.959771
3  0.365643  0.417065  0.951372
4  0.733081  0.880914  0.804032

2.根据自定义的行列索引操作

示例数据


df = pd.DataFrame(data=np.random.rand(5,5))
df.index = list('abcde')
df.columns = list('一二三四五')
print(df)

数据展示


          一         二         三         四         五
a  0.188495  0.574422  0.530326  0.842489  0.474946
b  0.912522  0.982093  0.964031  0.498638  0.826693
c  0.580789  0.013957  0.515229  0.795052  0.859267
d  0.540641  0.865602  0.305256  0.552566  0.754791
e  0.375407  0.236118  0.129210  0.711744  0.067356

2.1行删除

[1]删除单行


df.drop(['b'],inplace=True)
print(df)

执行结果:

          一         二         三         四         五
a  0.306350  0.622067  0.030573  0.490563  0.009987
c  0.672423  0.071661  0.274529  0.400086  0.263024
d  0.654204  0.809087  0.066099  0.167290  0.534452
e  0.628917  0.232629  0.070167  0.469962  0.957898

[2]删除多行


df.drop(['b','d'],inplace=True)
print(df)

执行结果:

          一         二         三         四         五
a  0.391583  0.509862  0.924634  0.466563  0.058414
c  0.802016  0.621347  0.659215  0.575728  0.935811
e  0.223372  0.286116  0.130587  0.113544  0.910859 

2.2列删除

[1]删除单列


df.drop(['二'],axis=1,inplace=True)# 删除单列
print(df)

执行结果:

          一         三         四         五
a  0.276147  0.797404  0.184472  0.081162
b  0.630190  0.328055  0.428668  0.168491
c  0.979958  0.029032  0.934626  0.106805
d  0.762995  0.003134  0.136252  0.317423
e  0.137211  0.116607  0.367742  0.840080

[2]删除多列


df.drop(['二','四'],axis=1,inplace=True) # 删除多列
# df.drop(columns=['二','四'],inplace=True) # 删除多列
print(df)

执行结果:

          一         三         五
a  0.665647  0.709243  0.019711
b  0.920729  0.995913  0.490998
c  0.352816  0.185802  0.406174
d  0.136414  0.563546  0.762806
e  0.259710  0.775422  0.794880

到此这篇关于PandasDataFrame数据删除详情的文章就介绍到这了,更多相关PandasDataFrame数据删除 原创内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Pandas中DataFrame数据删除详情

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

学习使用Pandas:删除DataFrame中的一列数据的方法

Pandas教程:如何删除DataFrame中的某一列数据?随着数据分析的需求不断增加,Python的Pandas库已经成为数据分析师的重要工具之一。Pandas提供了强大的数据操作和处理功能,其中一个常见的操作是删除DataFrame中
学习使用Pandas:删除DataFrame中的一列数据的方法
2024-01-13

Python数据分析之Pandas Dataframe怎么修改、删除及查询

这篇文章主要介绍“Python数据分析之Pandas Dataframe怎么修改、删除及查询”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe怎么修
2023-06-30

mysql如何删除数据表和关联的数据表删除详情

目录前言一、mysql删除没有被关联的表二、删除被其他表关联的主表前言删除数据表的时候,表的定义和表中所有的数据均会被删除。因此,在进行删除操作前,最好对表中的数据做一个备份,以免造成无法挽回的后果。mysql删除数据表分为两种情况;
2022-07-26

pandas数据清洗如何实现删除

这篇文章主要介绍“pandas数据清洗如何实现删除”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“pandas数据清洗如何实现删除”文章能帮助大家解决问题。准备工作(导入库、导入数据)import p
2023-07-02

ajax怎么实现数据删除、查看详情功能

这篇文章主要介绍了ajax怎么实现数据删除、查看详情功能,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。运用bootstrap,jquery和ajax显示一些数据,附加删除功能
2023-06-08

Python pandas怎么删除指定行/列数据

Python pandas怎么删除指定行/列数据,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。1.滤除缺失数据dropna()import pandas as pdimport
2023-06-29

pandas中DataFrame数据合并连接的实例分析

这篇文章主要介绍了pandas中DataFrame数据合并连接的实例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。pandas作者Wes McKinney 在【PYTHO
2023-06-15

Python数据分析:pandas中Dataframe的groupby与索引用法

Pandasgroupby操作允许根据键对DataFrame数据进行分组,而索引提供快速查找DataFrame特定行的机制。结合使用可高效分析大型数据集。groupby根据键分组数据,返回按键分组的组,可使用apply()/agg()/transform()方法对组应用聚合函数或操作。索引唯一标识每一行,可通过loc和iloc方法访问和检索行。结合groupby和索引,可以高效执行高级数据操作,如按组索引、迭代和过滤。
Python数据分析:pandas中Dataframe的groupby与索引用法
2024-04-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录