我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python人工智能实战之以图搜图的实现

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python人工智能实战之以图搜图的实现

前言

基于vgg网络和Keras深度学习框架的以图搜图功能实现。

一、实验要求

给出一张图像后,在整个数据集中(至少100个样本)找到与这张图像相似的图像(至少5张),并把图像有顺序的展示。

二、环境配置

解释器:python3.10

编译器:Pycharm

必用配置包:

numpy、h5py、matplotlib、keras、pillow

三、代码文件

1、vgg.py

# -*- coding: utf-8 -*-
import numpy as np
from numpy import linalg as LA
 
from keras.applications.vgg16 import VGG16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input as preprocess_input_vgg
class VGGNet:
    def __init__(self):
        self.input_shape = (224, 224, 3)
        self.weight = 'imagenet'
        self.pooling = 'max'
        self.model_vgg = VGG16(weights = self.weight, input_shape = (self.input_shape[0], self.input_shape[1], self.input_shape[2]), pooling = self.pooling, include_top = False)
        self.model_vgg.predict(np.zeros((1, 224, 224 , 3)))
 
    #提取vgg16最后一层卷积特征
    def vgg_extract_feat(self, img_path):
        img = image.load_img(img_path, target_size=(self.input_shape[0], self.input_shape[1]))
        img = image.img_to_array(img)
        img = np.expand_dims(img, axis=0)
        img = preprocess_input_vgg(img)
        feat = self.model_vgg.predict(img)
        # print(feat.shape)
        norm_feat = feat[0]/LA.norm(feat[0])
        return norm_feat

2、index.py

# -*- coding: utf-8 -*-
import os
import h5py
import numpy as np
import argparse
from vgg import VGGNet
 
def get_imlist(path):
    return [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.jpg')]
 
if __name__ == "__main__":
    database = r'D:\pythonProject5\flower_roses'
    index = 'vgg_featureCNN.h5'
    img_list = get_imlist(database)
 
    print("         feature extraction starts")
 
    feats = []
    names = []
 
    model = VGGNet()
    for i, img_path in enumerate(img_list):
        norm_feat = model.vgg_extract_feat(img_path)  # 修改此处改变提取特征的网络
        img_name = os.path.split(img_path)[1]
        feats.append(norm_feat)
        names.append(img_name)
        print("extracting feature from image No. %d , %d images in total" % ((i + 1), len(img_list)))
 
    feats = np.array(feats)
 
    output = index
    print("      writing feature extraction results ...")
 
    h5f = h5py.File(output, 'w')
    h5f.create_dataset('dataset_1', data=feats)
    # h5f.create_dataset('dataset_2', data = names)
    h5f.create_dataset('dataset_2', data=np.string_(names))
    h5f.close()

3、test.py

# -*- coding: utf-8 -*-
from vgg import VGGNet
import numpy as np
import h5py
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import argparse
 
query = r'D:\pythonProject5\rose\red_rose.jpg'
index = 'vgg_featureCNN.h5'
result = r'D:\pythonProject5\flower_roses'
# read in indexed images' feature vectors and corresponding image names
h5f = h5py.File(index, 'r')
# feats = h5f['dataset_1'][:]
feats = h5f['dataset_1'][:]
print(feats)
imgNames = h5f['dataset_2'][:]
print(imgNames)
h5f.close()
print("               searching starts")
queryImg = mpimg.imread(query)
plt.title("Query Image")
plt.imshow(queryImg)
plt.show()
 
# init VGGNet16 model
model = VGGNet()
# extract query image's feature, compute simlarity score and sort
queryVec = model.vgg_extract_feat(query)  # 修改此处改变提取特征的网络
print(queryVec.shape)
print(feats.shape)
scores = np.dot(queryVec, feats.T)
rank_ID = np.argsort(scores)[::-1]
rank_score = scores[rank_ID]
# print (rank_ID)
print(rank_score)
# number of top retrieved images to show
maxres = 6  # 检索出6张相似度最高的图片
imlist = []
for i, index in enumerate(rank_ID[0:maxres]):
    imlist.append(imgNames[index])
    print(type(imgNames[index]))
    print("image names: " + str(imgNames[index]) + " scores: %f" % rank_score[i])
print("top %d images in order are: " % maxres, imlist)
# show top #maxres retrieved result one by one
for i, im in enumerate(imlist):
    image = mpimg.imread(result + "/" + str(im, 'utf-8'))
    plt.title("search output %d" % (i + 1))
    plt.imshow(np.uint8(image))
    f = plt.gcf()  # 获取当前图像
    f.savefig(r'D:\pythonProject5\result\{}.jpg'.format(i),dpi=100)
    #f.clear()  # 释放内存
    plt.show()

四、演示

1、项目文件夹

数据集

结果(运行前)

原图

2、相似度排序输出

3、保存结果

五、尾声

分享一个实用又简单的爬虫代码,搜图顶呱呱!

import os
import time
import requests
import re
def imgdata_set(save_path,word,epoch):
    q=0     #停止爬取图片条件
    a=0     #图片名称
    while(True):
        time.sleep(1)
        url="https://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word={}&pn={}&ct=&ic=0&lm=-1&width=0&height=0".format(word,q)
        #word=需要搜索的名字
        headers={
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36 Edg/88.0.705.56'
        }
        response=requests.get(url,headers=headers)
        # print(response.request.headers)
        html=response.text
        # print(html)
        urls=re.findall('"objURL":"(.*?)"',html)
        # print(urls)
        for url in urls:
            print(a)    #图片的名字
            response = requests.get(url, headers=headers)
            image=response.content
            with open(os.path.join(save_path,"{}.jpg".format(a)),'wb') as f:
                f.write(image)
            a=a+1
        q=q+20
        if (q/20)>=int(epoch):
            break
if __name__=="__main__":
    save_path = input('你想保存的路径:')
    word = input('你想要下载什么图片?请输入:')
    epoch = input('你想要下载几轮图片?请输入(一轮为60张左右图片):')  # 需要迭代几次图片
    imgdata_set(save_path, word, epoch)

到此这篇关于Python人工智能实战之以图搜图的实现的文章就介绍到这了,更多相关Python以图搜图内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python人工智能实战之以图搜图的实现

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python人工智能实战之以图搜图怎么实现

本篇内容介绍了“Python人工智能实战之以图搜图怎么实现”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、实验要求给出一张图像后,在整个数
2023-06-30

人工智能是如何实现图像版GPT-3的?

编程学习网:今年年初,OpenAI 图像版 GPT-3、120 亿参数的 DALL-E 刷屏社区,这个大型模型可以将以自然语言形式表达的大量概念转换为合适的图像,效果十分惊艳。
人工智能是如何实现图像版GPT-3的?
2024-04-23

Python实战之看图猜字游戏的实现

看图猜成语,是考验一个人的反应能力,也考验一个人的右脑思维。据说越聪明的人,这道题的完成率越高。本文就来用Python实现这一经典小游戏,需要的可以参考一下
2023-02-16

python人工智能算法之随机森林怎么实现

这篇文章主要介绍了python人工智能算法之随机森林怎么实现的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇python人工智能算法之随机森林怎么实现文章都会有所收获,下面我们一起来看看吧。随机森林(Random
2023-07-06

Python打工人必备之windows倒计时锁屏功能的实现

每个人的电脑里都会有不想让别人知道的隐私,或者是上班时间偷偷摸鱼怕被发现的小秘密。那怎么办?就干脆把隐私锁起来!从源头上杜绝被他人偷窥自己的隐私。本文就来用Python实现一个windows倒计时锁屏功能,需要的可以参考一下
2023-05-14

Python可视化Dash工具之plotly基本图形的实现示例

小编给大家分享一下Python可视化Dash工具之plotly基本图形的实现示例,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!Plotly Express是对 Plotly.py 的高级封装,内置了大量实用、现代的绘图模板
2023-06-14

使用Python编写并实现一个具备人工智能的聊天机器人(包含代码和步骤)

聊天机器人是一种人工智能,它通过应用程序或消息来模拟与用户的对话。本文我们将使用Pytho的chatterbot库来实现聊天机器人。该库生成对用户输入的自动响应。响应基于库中实现的机器学习算法。机器学习算法使聊天机器人在收集用户响应时更容
使用Python编写并实现一个具备人工智能的聊天机器人(包含代码和步骤)
2024-01-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录