我的编程空间,编程开发者的网络收藏夹
学习永远不晚

如何使用Python中的可视化工具Matplotlib

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

如何使用Python中的可视化工具Matplotlib

如何使用Python中的可视化工具Matplotlib,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

Matplotlib是一个Python 2D绘图库和一些基本的3D图表,可以生成各种格式图片。Matplotlib可用于Python脚本,Python  shell,Jupyter笔记本,Web应用程序服务器等等。

查看Matplotlib 版本

>>> import matplotlib  >>> matplotlib.__version__  '3.0.3'

在Python 中调用Matplotlib,通常使用 import matplotlib.pyplot 调用Matplotlib 集成的快速绘图  pyplot模块。

Figure(整个图像)

在任何绘图之前,需要一个Figure对象,可以理解成需要一张画板才能开始绘图。

import matplotlib.pyplot as plt  fig = plt.figure()

在Matplotlib中,整个图像为一个Figure 对象。Figure对象中可以包含一个或者多个Axes对象,每个Axes  对象都是一个拥有自己坐标系统的绘图区域。

如何使用Python中的可视化工具Matplotlib

Axes(轴线)

在拥有Figure对象之后,在作画前还需要轴,没有轴的话就没有绘图基准,所以需要添加Axes。也可以理解成为真正可以作画的纸。

ax = fig.add_subplot(111)  ax.set(xlim=[0, 5], ylim=[0, 6], title='An Example Axes',  ylabel='Y-Axis', xlabel='X-Axis')  plt.show()

上述代码,在一幅图上添加了一个Axes,然后设置了这个Axes的X轴以及Y轴的取值范围,以及一些文本信息。效果如下:

如何使用Python中的可视化工具Matplotlib

Matplotlib下, 一个 Figure 对象可以包含多个子图(Axes),可以使用 subplot() 快速绘制,其调用形式如下 :

subplot(numRows, numCols, plotNum)
  • 图表的整个绘图区域被分成 numRows 行和 numCols 列;

  • 然后按照从左到右,从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1;

  • plotNum 参数指定创建的 Axes 对象所在的区域;

对于上面的fig.add_subplot(111)就是添加Axes的,参数的解释的在画板的第1行第1列的***个位置生成一个Axes对象来准备作画。

也可以通过fig.add_subplot(2, 2, 1)的方式生成Axes,前面两个参数确定了面板的划分。

如果 numRows, numCols 和 plotNum 这三个数都小于 10 的话, 可以把它们缩写为一个整数, 例如 subplot(221) 和  subplot(2,2,1) 是相同的。

subplot 在 plotNum 指定的区域中创建一个轴对象。如果新创建的轴和之前创建的轴重叠的话,之前的轴将被删除。

如何使用Python中的可视化工具Matplotlib

Multiple Axes 多个子图

下面的一次性生成所有 Axes:

如何使用Python中的可视化工具Matplotlib

简单总结一下

  • 在最顶层的是画布,称之为figure;

  • 在画布上可以在不同的区域上绘制,这些区域称之为subplot;

每一个子图区域,又可以做如下划分:

  • axis 也就是x,y坐标轴;

  • tick 也就是每一个坐标轴的刻度;

  • label 也就是坐标轴上的标签;

  • title 也就是每一个子图的标题;

  • data 是输入的数据绘制出的图像;

Matplotlib 绘图演示代码

将这个图像划分成8个子区域,每个子区域绘制一个不同的图像。

import numpy as np  import matplotlib.pyplot as plt  x=[1,2,3,4]  y=[3,5,10,25]  # 创建子图  plt.subplot(241)  plt.plot(x,y)  plt.title("plot")  plt.subplot(242)  plt.scatter(x, y)  plt.title("scatter")  plt.subplot(243)  plt.pie(y)  plt.title("pie")  plt.subplot(244)  plt.bar(x, y)  plt.title("bar")  plt.subplot(245)  plt.boxplot(y, sym="o")  plt.title("box")  # sin/cos 图像  plt.subplot(246)  x = np.linspace(0, np.pi)  y_sin = np.sin(x)  y_cos = np.cos(x)  plt.plot(x, y_sin)  plt.plot(x, y_cos)  # g-- 设置线条样式和颜色  plt.subplot(247)  plt.plot(x, y_sin, 'g--')  plt.title("sin")  # 加载本地图片  import matplotlib.image as mpimg  img=mpimg.imread('666.jpg')  plt.subplot(248)  plt.imshow(img)  plt.title("cool...")  plt.show()
如何使用Python中的可视化工具Matplotlib

关于如何使用Python中的可视化工具Matplotlib问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注编程网行业资讯频道了解更多相关知识。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

如何使用Python中的可视化工具Matplotlib

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何使用Python中的可视化工具Matplotlib

如何使用Python中的可视化工具Matplotlib,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。Matplotlib是一个Python 2D绘图库和一些基本的3D图表,
2023-06-16

如何让高效使用Python可视化工具Matplotlib

如何让高效使用Python可视化工具Matplotlib,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。Matplotlib是Python中最常用的可视化工具之一,可以非常方
2023-06-17

PyTorch中可视化工具的使用

本文主要介绍了PyTorch中可视化工具的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-05-15

 python如何用matplotlib可视化绘图

本篇文章为大家展示了 python如何用matplotlib可视化绘图,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。1、Matplotlib 简介Matplotlib 简介:Matplotlib 是
2023-06-26

怎么使用python的可视化工具Pandas_Alive

这篇文章主要介绍“怎么使用python的可视化工具Pandas_Alive”,在日常操作中,相信很多人在怎么使用python的可视化工具Pandas_Alive问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎
2023-06-25

如何理解Python可视化Dash工具

这篇文章主要介绍“如何理解Python可视化Dash工具”,在日常操作中,相信很多人在如何理解Python可视化Dash工具问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”如何理解Python可视化Dash工具
2023-06-15

如何使用Elasticsearch常用可视化管理工具

这期内容当中小编将会给大家带来有关如何使用Elasticsearch常用可视化管理工具,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。概 述强大的搜索引擎 Elasticsearch 与传统关系型数据库的一
2023-06-19

Python 中有哪些可视化工具

Python 中有哪些可视化工具,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。探索数据集在我们探讨数据的可视化之前,让我们先来快速的浏览一下我们将要处理的数据集。我们将要使用的
2023-06-17

Python可视化工具Plotly怎么用

小编给大家分享一下Python可视化工具Plotly怎么用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一.简介发展由来:随着信息技术的发展和硬件设备成本的降低,
2023-06-22

Mongdb可视化工具Studio 3T的使用

一、官网地址https://studio3t.com/ 二、下载和安装点击DOWNLOAD即可下载    按照自己电脑系统进行选择,然后填写邮箱和选择行业,第一次登录如果不提交不会下载,下载完成是一个zip压缩包(我的电脑是windows系统),解压缩安装即可
Mongdb可视化工具Studio 3T的使用
2016-05-11

Python可视化最频繁使用的工具有哪些

这篇“Python可视化最频繁使用的工具有哪些”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python可视化最频繁使用的工
2023-07-05

Nginx开源可视化配置工具NginxConfig如何使用

这篇“Nginx开源可视化配置工具NginxConfig如何使用”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Nginx开源
2023-07-02

Python可视化最频繁使用的10大工具总结

数据可视化是数据科学中不可缺少的一部分,下面这篇文章主要给大家介绍了关于Python可视化最频繁使用的10大工具,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
2023-03-24

Python工程师常用的可视化工具有哪些

小编给大家分享一下Python工程师常用的可视化工具有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1、灯果数据可视化灯果数据可视化BI软件是新一代人工智能数
2023-06-02

如何利用python将Matplotlib可视化插入到Excel表格中

这篇文章主要讲解了“如何利用python将Matplotlib可视化插入到Excel表格中”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“如何利用python将Matplotlib可视化插入到
2023-07-02

MySql可视化工具的安装与使用(MysqlWorkBench)

MySql可视化工具曾经用过Navicat的破解版,最近下载了Navicat Premium15,试用期后我就想搞个破解版的,正好在看《深入浅出MySQL》,书中用的是MysqlWorkBench,那就懒得去找破解版了咯,搞不好又带一堆流氓软件。Navicat
MySql可视化工具的安装与使用(MysqlWorkBench)
2018-02-17

MongoDB可视化工具mongodb compass怎么使用

这篇文章主要介绍了MongoDB可视化工具mongodb compass怎么使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇MongoDB可视化工具mongodb compass怎么使用文章都会有所收获,下面
2023-07-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录