我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python可视化工具Plotly的应用教程

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python可视化工具Plotly的应用教程

一.简介

发展由来:

随着信息技术的发展和硬件设备成本的降低,当今的互联网存在海量的数据,要想快速从这些数据中获取更多有效的信息,数据可视化是重要的一环。对于Python语言来说,比较传统的数据可视化模块是Matplotlib,但它存在不够美观、静态性、不易分享等缺点,限制了Python在数据可视化方面的发展。

为了解决这个问题,新型的动态可视化开源模块Plotly应运而生。由于Plotly具有动态、美观、易用、种类丰富等特性,所以一经问世就受到开发人员的喜爱。

简要说明

Plotly是Python 库中一种互动,开源绘图库,也是基于javascript的绘图库,支持 40 多种独特的图表类型,效果美观,其中涵盖各种统计、财务、地理、科学和三维用例。

有在线和离线模式,易于保存与分享plotly的绘图结果,并且可以与Web无缝集成;

ploty默认的绘图结果,是一个HTML网页文件,通过浏览器可以直接查看;

在这里插入图片描述

二.各图运用

安装:


pip install plotly

下面均在Jupyter Notebook中运行

数据源:


import plotly
import plotly.express as px
import plotly.graph_objects as go
import plotly.io as pio
import pandas as pd
import numpy as np

# plotly内置了数据集,方便大家不受数据分析思路的背景下,练手用
df=px.data.gapminder()
df.head()

运行结果:

在这里插入图片描述

1.柱状图


# 绘制中国历年人口变化图
# df_country=df.query('country=="China"')
df_country=df[df['country']=='China'] 
# 柱状图展示
fig=px.bar(df_country,  # 数据源
           x='year',  # 横坐标:年份
           y='pop',  # 纵坐标:人口
           text='pop',  # 说明:人口
           color='lifeExp',  # 颜色取值:根据平均寿命的值来取
           hover_name='year', #控制点名称:年份
          )
fig

运行结果:

在这里插入图片描述


# 注释
fig.update_layout(title_text='中国人口变迁史',
                  title_x=.5,
                  font=dict(family='simsun',
                           size=14,
                           color='#1d39c4')
                 )
# 注释坐标轴
fig.update_layout(xaxis_title='年份',
                 yaxis_title='人口数量')

fig

运行结果:

在这里插入图片描述


#柱形图文字格式
fig.update_traces(
                 textposition='outside',
                 texttemplate='%{text:,.2s}')

fig

运行结果:

在这里插入图片描述


#利用customdata增加数据集
fig.update_traces(customdata=df[['lifeExp','gdpPercap']])
fig.update_traces(hovertemplate='Year: %{x}<br><br> Population: %{y}<br> Life Expectation: %{customdata[0]:,.2f}<br>GDP per capital: %{customdata[1]:,.2f}')
# 坐标轴tick设置
fig.update_xaxes(tickangle=-45,tickfont=dict(family='arial',size=12))
        
fig

运行结果:

在这里插入图片描述


# 设置间隙大小及文本大小
fig.update_layout(bargap=.4,
                 uniformtext_minsize=8,
                 uniformtext_mode='show')
# 设置注释
fig.add_annotation(x='1982',
                   y=1000281000,
                   text='突破10亿',
                  font=dict(color='red'))
fig.update_annotations(dict(xref='x',
                           yref='y',
                           showarrow=True),
                      arrowcolor='red',
                      arrowhead=4)
fig.show()

运行结果:

在这里插入图片描述

2.散点图


df_2007 = df[df["year"] == 2007]
df_2007

运行结果:

在这里插入图片描述


# 散点图
px.scatter(df_2007,   # 数据集
           x="gdpPercap",  # 横坐标:人均GDP
           y="lifeExp",  # 纵坐标:平均寿命
           color="continent"  # 颜色取值:根据洲的值来取
          )

运行结果:

在这里插入图片描述

选择一个区域,能将其放大

在这里插入图片描述

在这里插入图片描述

3.冒泡散点图


# 冒泡散点图
px.scatter(df_2007,   # 绘图DataFrame数据集
           x="gdpPercap",  # 横坐标
           y="lifeExp",  # 纵坐标
           color="continent",  # 区分颜色
           size="pop",  # 区分圆的大小
           size_max=60,  # 散点大小
           hover_name="country"  # 控制点名称
          )

运行结果:

在这里插入图片描述

4.旭日图


# 旭日图
px.sunburst(df_2007,   # 绘图数据
            path=['continent', 'country'],  # 指定路径:从洲到国家
            values='pop', # 数据大小:人口数
            color='lifeExp',  # 颜色
            hover_data=['iso_alpha'] # 显示数据
           )

运行结果:

在这里插入图片描述

5.地图图形


# 设置地图的图形
px.choropleth(
  df,  # 数据
  locations="iso_alpha",  # 简称
  color="lifeExp",  # 颜色取值
  hover_name="country",  # 悬停数据
  animation_frame="year",  # 播放按钮设置
  color_continuous_scale=px.colors.sequential.Plasma,  # 颜色变化取值
  projection="natural earth"  # 使用的地图设置
)

运行结果:

在这里插入图片描述

三.实战案例

使用泰坦里克号生存为例


import plotly
import plotly.express as px
import plotly.graph_objects as go
import plotly.io as pio
import pandas as pd
import numpy as np

#数据读取
path1='./dataSet/test.csv'
path2='./dataSet/train.csv'
test=pd.read_csv(path1)
train=pd.read_csv(path2)
#数据合并
data=pd.concat([test,train])

运行结果:

在这里插入图片描述


# 展示数据中survived分布情况
df1=pd.DataFrame(data=data['Survived'].value_counts())
df1

运行结果:

在这里插入图片描述


fig1=px.bar(df1,y='Survived',text='Survived',color_discrete_sequence=[['#B4C7EC','#14A577']])
fig1.update_layout(title='Survival Status in Titanic',
                   title_x=.5,
                  xaxis_title='Passenger survival status',
                  yaxis_title='Numbers',
                  font=dict(family='arial',color='#000000',size=12),
                  bargap=.5)
fig1.update_xaxes(tick0=0,  #设置X轴起点,防止从负数开始
                  dtick=1,   #设置间隔,防止出现0.5间隔
                  tickvals=[0,1], #设置tick数值,为了重命名
                 ticktext=['Drowned','Suvived'],#重命名系列index
                 tickfont=dict(family='arial',color='#000000',size=14)) 
fig1.update_yaxes(range=[0,650]) #设置Y轴区间,使图形不至于视觉上压迫
fig1.update_traces(textposition='outside',
                   textfont_size=16,
                  textfont_color=['#8C1004','#007046'])
fig1.show()

运行结果:

在这里插入图片描述


# 以survived 与sex为例,展示各性别下,生存与死亡的相对关系。
df_sex=pd.DataFrame(data=data.groupby(['Survived','Sex'])['PassengerId'].count())
df_sex=df_sex.reset_index()
df_sex

运行结果:

在这里插入图片描述


fig_sex1=px.bar(df_sex,x='Survived',y='PassengerId',color='Sex',barmode='group',text='PassengerId',
                 color_discrete_map={'female':'#F17F0B','male':'#0072E5'})

fig_sex1.update_traces(textposition='outside',
                   textfont_size=14,
                      textfont_color=['#8C1004','#007046'])

fig_sex1.update_xaxes(
                  tickvals=[0,1], #设置tick数值,为了重命名
                 ticktext=['Drowned','Suvived'],#重命名系列index
                 tickfont=dict(family='arial',
                           color='#000000',
                           size=14)) 

fig_sex1.update_layout(title='Overall Suvival in terms of Sex',
                       title_x=.5,
                       bargap=.35,  
                       xaxis_title='',
                      yaxis_title='Numbers of Passengers',
                      font=dict(family='arial',
                           color='#000000',
                           size=13))

fig_sex1.update_yaxes(range=[0,500],
                     dtick=100)

fig_sex1.show()

运行结果:

在这里插入图片描述


fig_sex2=px.bar(df_sex,x='Sex',y='PassengerId',facet_col='Survived',text='PassengerId',
               color_discrete_sequence=[['#F17F0B','#0072E5']])

fig_sex2.update_traces(textposition='outside',
                      textfont_size=14,)

fig_sex2.update_layout(title='Overall Suvival in terms of Sex',
                       title_x=.5,
                       bargap=.35,  
                      yaxis_title='Numbers of Passengers',
                      font=dict(family='arial',
                           color='#000000',
                           size=13),
                      )
#取消自带sex
fig_sex2.update_layout(xaxis=dict(title=''),
                      xaxis2=dict(title=''))
fig_sex2.update_yaxes(range=[0,500],
                     dtick=100)

fig_sex2.for_each_annotation(lambda a:a.update(text=a.text.replace('Survived=0.0','Drowned')))
fig_sex2.for_each_annotation(lambda a:a.update(text=a.text.replace('Survived=1.0','Suvived')))

fig_sex2.update_layout(annotations=[dict(font=dict(size=16,
                                                  color='#002CB2'))])
fig_sex2.show()

运行结果:

在这里插入图片描述


# 以survived 与pclass为例,展示各舱位等级下,生存与死亡的相对关系。
df_pclass=pd.DataFrame(data=data.groupby(['Survived','Pclass'])['PassengerId'].count())
df_pclass=df_pclass.reset_index()
df_pclass

运行结果:

在这里插入图片描述


fig_sex1=px.bar(df_pclass,x='Survived',y='PassengerId',color='Pclass',barmode='group',text='PassengerId',
                 color_discrete_map={'1':'#F17F0B','2':'#0072E5','3':'#8C1004'})

fig_sex1.update_traces(textposition='outside',
                   textfont_size=14,
                      textfont_color=['#8C1004','#007046'])

fig_sex1.update_xaxes(
                  tickvals=[0,1], #设置tick数值,为了重命名
                 ticktext=['Drowned','Suvived'],#重命名系列index
                 tickfont=dict(family='arial',
                           color='#000000',
                           size=14)) 

fig_sex1.update_layout(title='Overall Suvival in terms of Pclass',
                       title_x=.5,
                       bargap=.35,  
                       xaxis_title='',
                      yaxis_title='Numbers of Passengers',
                      font=dict(family='arial',
                           color='#000000',
                           size=13))

fig_sex1.update_yaxes(range=[0,500],
                     dtick=100)

fig_sex1.show()

运行结果:

在这里插入图片描述

以上就是Python可视化工具Plotly的应用教程的详细内容,更多关于Python Plotly的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python可视化工具Plotly的应用教程

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python可视化工具Plotly怎么用

小编给大家分享一下Python可视化工具Plotly怎么用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一.简介发展由来:随着信息技术的发展和硬件设备成本的降低,
2023-06-22

Python学习教程:Python可视化工具包

Python学习教程:Python可视化工具包伙伴们,用Python做项目的你们做图表的时候有没有因为不知道用哪种又好看又好用的可视化工具包特纠结过?反正天秤座的小强是有些纠结的。在这里小强总结了八种在 Python 中实现的可视化工具包!
2023-06-02

Python可视化Dash工具之plotly基本图形的实现示例

小编给大家分享一下Python可视化Dash工具之plotly基本图形的实现示例,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!Plotly Express是对 Plotly.py 的高级封装,内置了大量实用、现代的绘图模板
2023-06-14

使用Plotly来简化Python中的数据可视化

Plotly 是一个绘图生态系统,可以让你在 Python 以及 JavaScript 和 R 中进行绘图。在本文中,我将重点介绍使用 Python 库进行绘图。

Python工程师常用的可视化工具有哪些

小编给大家分享一下Python工程师常用的可视化工具有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1、灯果数据可视化灯果数据可视化BI软件是新一代人工智能数
2023-06-02

怎么使用python的可视化工具Pandas_Alive

这篇文章主要介绍“怎么使用python的可视化工具Pandas_Alive”,在日常操作中,相信很多人在怎么使用python的可视化工具Pandas_Alive问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎
2023-06-25

Python工程师最常用到的可视化工具有哪些

这篇文章主要为大家展示了“Python工程师最常用到的可视化工具有哪些”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Python工程师最常用到的可视化工具有哪些”这篇文章吧。1、灯果数据可视化灯
2023-06-02

RedisDesktopManager(Redis可视化工具)安装及使用图文教程

这篇文章主要介绍了RedisDesktopManager(Redis可视化工具)安装及使用图文教程,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-05-18

Redis Desktop Manager(Redis可视化工具)安装及使用教程

一、工具/材料 官网下载:https://redisdesktop.com/download 百度网盘:https://pan.baidu.com/s/15xVRpCT8mkP2uT8PoBHT3g 提取码:v727 二、方法/步骤 1.
2023-08-17

如何使用Python中的可视化工具Matplotlib

如何使用Python中的可视化工具Matplotlib,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。Matplotlib是一个Python 2D绘图库和一些基本的3D图表,
2023-06-16

PyTorch中可视化工具的使用

本文主要介绍了PyTorch中可视化工具的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-05-15

Python必备的可视化工具有哪些

这篇文章给大家分享的是有关Python必备的可视化工具有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。1、灯果可视化灯果数据可视化BI软件是新一代人工智能数据可视化大屏软件,内置丰富的大屏模板,可视化编辑操作
2023-06-02

用一个开源工具实现多线程 Python 程序的可视化

VizTracer 是一个追踪和可视化 Python 程序的工具,对日志、调试和剖析很有帮助。尽管它对单线程、单任务程序很好用,但它在并发程序中的实用性是它的独特之处。

Redis Desktop Manager(Redis可视化工具)安装及使用图文教程

目录一、工具/材料二、方法/步骤1.说明2.安装方法3.使用方法一、工具/材料官网下载:https://Redisdesktop.com/download百度网盘:链接: https://pan.baidu.com/s/1nww_AwK
2023-04-27

Python工程师最喜欢使用的数据可视化工具有哪些

这篇文章将为大家详细讲解有关Python工程师最喜欢使用的数据可视化工具有哪些,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1、灯果数据可视化(http://www.dengguobi.com/)灯果数据
2023-06-01

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录