我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++详解数据结构中的搜索二叉树

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++详解数据结构中的搜索二叉树

定义

搜索二叉树,也称有序二叉树,排序二叉树,是指一棵空树或者具有下列性质的二叉树:

1、若任意节点的左子树不空,则左子树上的所有节点的值均小于它的根节点的值

2、若任意节点的右子树不空,则右子树上的所有节点的值均大于它的根节点的值

3、任意节点的左右子树也称为二叉查找树。

4、没有键值相等的节点。

5、搜索二叉树中序遍历为有序数组。

结构代码实现

template<class K>
struct BSTreeNode
{
    BSTreeNode<K>* _left;
    BSTreeNode<K>* _right;
    
    K _key;
    
    BSTreeNode(const K& key)
        :_left(left)
        ,_right(right)
        ,_key(key)
    {}
};

查找某个元素

在搜索二叉树b中查找x的过程

  • 若树是一个空树,则搜索失败,否则:
  • 若x等于b的根节点的键值,则查找成功;否则:
  • 若x小于b的根节点的键值,则搜索左子树;否则:
  • 若x大于b的根节点的键值,则搜索右子树。

非递归实现

typrdef BSTreeNode<K> Node;
​
Node* find(const K& key)
{
    Node*cur =_root;
    while(cur)
    {
        if(cur->_key<key)
            cur=cur->right;
        else if(cur->_key>key)
            cur=cur->left;
        else
            return cur;
    }
    return nullptr;
}

递归实现

typrdef BSTreeNode<K> Node;
​
Node* _findr(Node* root,const K& key)
{
    if(root==nullptr)
    {
        return nullptr;
    }
    if(root->_key<key)
    {
        return _findr(root->_right);
    }
    else if(root->_key>key)
    {
        return _findr(root->_left);
    }
    else
        return root;
    
}

构造搜索二叉树

  • 若树为空树,则直接插入;否则
  • 若插入值大于根节点的键值,则插入到右子树中,以此递归;否则
  • 若插入值小于根节点的键值,则插入到左子树中

非递归实现:

bool insert(const K& key)
{
    if(_root==nullptr)
    {
        _root=new Node(key);
        return true;
    }
    Node* parent=nullptr;
    Node* cur=_root;
    while(cur)
    {
        if(cur->_key<key)
        {
            parent=cur;
            cur=cur->_right;
        }
        else if(cur->_key>key)
        {
            parent=cur;
            cur=cur->_left;
        }
        else
            return false;
    }
    cur=new Node(key);
    if(parent->_key<key)
    {
        parent->_right=cur;
    }
    else
        parent->_left=cur;
    return true;
}

递归实现:

bool _insertR(Node* &root,const K&key)
{
    if(root==NULL)
    {
        root=new Node(key);
        return true;
    }
    if(root->_key<key)
        return _insertR(root->_right,key);
    else if(root->_key>key)
        return _insertR(root->_left,key);
    else
        return false;
}

往搜索二叉树中插入元素

向一个二叉搜索树b中插入一个节点s的算法,过程为:

  • 若b是空树,则将s所指结点作为根节点插入,否则:
  • 若s->data等于b的根节点的数据域之值,则返回,否则:
  • 若s->data小于b的根节点的数据域之值,则把s所指节点插入到左子树中,否则:
  • 把s所指节点插入到右子树中。(新插入节点总是叶子节点)

搜索二叉树删除节点

重难点

二叉搜索树的结点删除比插入较为复杂,总体来说,结点的删除可归结为三种情况:

  • 如果结点z没有孩子节点,那么只需简单地将其删除,并修改父节点,用NULL来替换z;
  • 如果结点z只有一个孩子,那么将这个孩子节点提升到z的位置,并修改z的父节点,用z的孩子替换z;
  • 如果结点z有2个孩子,那么查找z的后继y,此外后继一定在z的右子树中,然后让y替换z

非递归实现

bool Erase(const K& key)
{
    Node* parent=nullptr;
    Node* cur=_root;
    while(cur)
    {
        if(cur->_key<key)
        {
            parent=cur;
            cur=cur->_right;
        }
        else if(cur->_key>key)
        {
            parent=cur;
            cur=cur->left;
        }
        else
        {
            //找到了,开始删除
            if(cur->_left==nullptr)
            {
                if(cur==_root)
                {
                    _root=cur->_right;
                }
                else
                {
                    if(parent->_left==cur)
                    {
                        parent->_left=cur->_right;
                    }
                    else
                    {
                        parent->_right=cur->_right;
                    }
                }
                delete cur;
            }
            else if(cur->_right==nullptr)
            {
                if(cur==_root)
                {
                    _root=cur->_left;
                }
                else
                {
                    if(parent->_left==cur)
                    {
                        parent->_left=cur->_left;
                    }
                    else
                    {
                        parent->_right=cur->_right;
                    }
                }
            }
            else   //左右都不为空
            {
                Node* minRight=cur->_right;
                while(minRight->_left)
                {
                    minRight=minRight->_left;
                }
                k min = minRight->_key;
                this->Erase(min);
                
                cur->_key=min;
            }
            return true;
        }
    }
    return false;
}

递归实现

// 如果树中不存在key,返回false
// 存在,删除后,返回true
bool _EraseR(Node*& root, const K& key)
{
    if(root==nullptr)
        return false;
    if(root->_key<key)
        return _EraseR(root->_right,key);
    else if(root->_key>key)
        return _EraseR(root->_left,key);
    else
    {
        //找到了,root就是要删除的节点
        if(root->_left == nullptr)
        {
            Node* del=root;
            root=root->_right;
            delete del;
        }
        else if(root->_right==nullptr)
        {
            Node* del = root;
            root=root->_left;
            delete del;
        }
        else
        {
            Node* minRight=root->_right;
            while(minRight->_left)
            {
                minRight=minRight->_left;
            }
            K min=minRight->_key;
            
            //转化为root的右子树删除min
            _EraseR(root->_right,min);
            root->_key=min;
            
        }
        return true;
    }
}

到此这篇关于C++ 详解数据结构中的搜索二叉树的文章就介绍到这了,更多相关C++ 搜索二叉树内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++详解数据结构中的搜索二叉树

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++二叉搜索树BSTree使用详解

二叉搜索树(BinarySearchTree)又称二叉排序树,也称作二叉查找树它或者是一棵空树,或者是具有以下性质的二叉树,若它的左子树不为空,则左子树上所有节点的值都小于根节点的值,若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
2023-03-09

Java数据结构之二叉搜索树实例分析

这篇文章主要介绍“Java数据结构之二叉搜索树实例分析”,在日常操作中,相信很多人在Java数据结构之二叉搜索树实例分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Java数据结构之二叉搜索树实例分析”的疑
2023-06-30

数据结构之链式二叉树详解

所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。本文通过代码示例详细介绍了C语言中的链式二叉树,需要的朋友可以参考一下
2023-05-16

C语言二叉树的概念结构详解

二叉树可以简单理解为对于一个节点来说,最多拥有一个上级节点,同时最多具备左右两个下级节点的数据结构。本文将详细介绍一下C++中二叉树的实现和遍历,需要的可以参考一下
2022-11-13

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录