我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Pandas实现groupby分组统计的实践

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Pandas实现groupby分组统计的实践

类似SQL:
select city,max(temperature) from city_weather group by city;

groupby:先对数据分组,然后在每个分组上应用聚合函数、转换函数

本次演示:
一、分组使用聚合函数做数据统计
二、遍历groupby的结果理解执行流程
三、实例分组探索天气数据

1、创建数据和导入包

import pandas as pd
import numpy as np
# 加上这一句,能在jupyter notebook展示matplot图表
%matplotlib inline

df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
                   'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                   'C': np.random.randn(8),
                   'D': np.random.randn(8)})

2、分组使用聚合函数做数据统计

1、单个列groupby,查询所有数据列的统计

df.groupby('A').sum()

groupby中的’A’变成了数据的索引列
因为要统计sum,但B列不是数字,所以被自动忽略掉

2、多个列groupby,查询所有数据列的统计

df.groupby(['A','B']).mean()

我们看到:(‘A’,‘B’)成对变成了二级索引

df.groupby(['A','B'], as_index=False).mean() #这会使得A、B两列不会成为二级索引

3、同时查看多种数据统计

df.groupby('A').agg([np.sum, np.mean, np.std])#列变成了多级索引

4、查看单列的结果数据统计

# 方法1:预过滤,性能更好
df.groupby('A')['C'].agg([np.sum, np.mean, np.std])

# 方法2
df.groupby('A').agg([np.sum, np.mean, np.std])['C']

5、不同列使用不同的聚合函数

df.groupby('A').agg({"C":np.sum, "D":np.mean})

3、遍历groupby的结果理解执行流程

for循环可以直接遍历每个group

1、遍历单个列聚合的分组

g = df.groupby('A')

for name,group in g:
    print(name)
    print(group)

可以获取单个分组的数据

g.get_group('bar')

2、遍历多个列聚合的分组

g = df.groupby(['A', 'B'])
for name,group in g:
    print(name)
    print(group)
    print()

name是一个2个元素的tuple,代表不同的列

g.get_group(('foo', 'one'))#可以获取单个分组的数据

可以直接查询group后的某几列,生成Series或者子DataFrame

g['C']

for name, group in g['C']:
    print(name)
    print(group)
    print(type(group))
    print()

其实所有的聚合统计,都是在dataframe和series上进行的

4、实例分组探索天气数据

fpath = "./datas/beijing_tianqi/beijing_tianqi_2018.csv"
df = pd.read_csv(fpath)
# 替换掉温度的后缀℃
df.loc[:, "bWendu"] = df["bWendu"].str.replace("℃", "").astype('int32')
df.loc[:, "yWendu"] = df["yWendu"].str.replace("℃", "").astype('int32')
df.head()
# 新增一列为月份
df['month'] = df['ymd'].str[:7]
df.head()

1、查看每个月的最高温度

data = df.groupby('month')['bWendu'].max()
data
data.plot()#绘图

2、查看每个月的最高温度、最低温度、平均空气质量指数

group_data = df.groupby('month').agg({"bWendu":np.max, "yWendu":np.min, "aqi":np.mean})
group_data.plot()

到此这篇关于Pandas实现groupby分组统计的实践的文章就介绍到这了,更多相关Pandas groupby分组统计内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Pandas实现groupby分组统计的实践

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Java8中groupBy实现集合的分组

这篇文章主要介绍Java8中groupBy实现集合的分组,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!场景:Java8的groupBy实现集合的分组,类似Mysql的group by分组功能,注意得到的是一个map1
2023-06-14

pandas的排序、分组groupby及cumsum累计求和的方法

这篇文章主要介绍了pandas的排序、分组groupby及cumsum累计求和的方法的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇pandas的排序、分组groupby及cumsum累计求和的方法文章都会有所收
2023-06-30

Pandas如何实现分组数据

这篇文章给大家分享的是有关Pandas如何实现分组数据的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。分组数据这种操作在数据科学家和分析师的日常生活中经常执行。Pandas提供了一个基本的函数来执行数据分组,即Gr
2023-06-27

SQL汇总统计与GROUPBY过滤查询实现

这篇文章主要介绍了SQL汇总统计与GROUPBY过滤查询实现,GROUPBY实质是先排序后分组,遵照索引建的最佳左前缀。当无法使用索引时,增大max_length_for_sort_data和sort_buffer参数的值
2023-01-05

Python Pandas模块实现数据的统计分析的方法

一、groupby函数 Python中的groupby函数,它主要的作用是进行数据的分组以及分组之后的组内的运算,也可以用来探索各组之间的关系,首先我们导入我们需要用到的模块import pandas as pd首先导入我们所需要用到的数据
2022-06-02

使用Pandas怎么实现一个分组计数功能

这篇文章将为大家详细讲解有关使用Pandas怎么实现一个分组计数功能,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。在对dataframe进行分析的时候会遇到需要分组计数,计数的column中
2023-06-14

pandas怎么实现按照Series分组

本篇内容介绍了“pandas怎么实现按照Series分组”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!目录1 按照一个Series进行分组2
2023-06-20

Pandas DataFrame分组求和、分组乘积的实例

PandasDataFrame提供分组求和和分组乘积功能。分组求和可计算组内值总和,语法为groupby(groupby_column).sum()。分组乘积可计算组内值积,语法为groupby(groupby_column).prod()。这些操作可用于解决实际问题,如计算不同部门员工总工资或不同日期股票平均价格。此外,还可以自定义聚合函数、过滤分组等,以满足更复杂的分析需求。
Pandas DataFrame分组求和、分组乘积的实例
2024-04-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录