我的编程空间,编程开发者的网络收藏夹
学习永远不晚

数据分析:OLS回归分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

数据分析:OLS回归分析


  变量之间存在着相关关系,比如,人的身高和体重之间存在着关系,一般来说,人高一些,体重要重一些,身高和体重之间存在的是不确定性的相关关系。回归分析是研究相关关系的一种数学工具,它能帮助我们从一个变量的取值区估计另一个变量的取值。

  OLS(最小二乘法)主要用于线性回归的参数估计,它的思路很简单,就是求一些使得实际值和模型估值之差的平方和达到最小的值,将其作为参数估计值。就是说,通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

  一,OLS回归

  OLS法通过一系列的预测变量来预测响应变量(也可以说是在预测变量上回归响应变量)。线性回归是指对参数β为线性的一种回归(即参数只以一次方的形式出现)模型:

  Yt=α+βxt+μt (t=1……n)表示观测数

  Yt 被称作因变量

  xt 被称作自变量

  α、β 为需要最小二乘法去确定的参数,或称回归系数

  μt 为随机误差项

  OLS线性回归的基本原则:最优拟合曲线应该使各点到直线的距离的平方和(即残差平方和,简称RSS)最小:

  

数据分析:OLS回归分析

  OLS线性回归的目标是通过减少响应变量的真实值与预测值的差值来获得模型参数(截距项和斜率),就是使RSS最小。

  为了能够恰当地解释OLS模型的系数,数据必须满足以下统计假设:

  正态性:对于固定的自变量值,因变量值成正太分布

  独立性:个体之间相互独立

  线性相关:因变量和自变量之间为线性相关

  同方差性:因变量的方差不随自变量的水平不同而变化,即因变量的方差是不变的

  二,用lm()拟合回归模型

  在R中,拟合回归模型最基本的函数是lm(),格式为:

  lm(formula, data)

  formula中的符号注释:

  ~ 分割符号,左边为因变量,右边为自变量,例如, z~x+y,表示通过x和y来预测z

  + 分割预测变量

  : 表示预测变量的交互项,例如,z~x+y+x:y

  * 表示所有可能的交互项,例如,z~x*y 展开为 z~x+y+x:y

  ^ 表示交互项的次数,例如,z ~ (x+y)^2,展开为z~x+y+x:y

  . 表示包含除因变量之外的所有变量,例如,如果只有三个变量x,y和z,那么代码 z~. 展开为z~x+y+x:y

  -1 删除截距项,强制回归的直线通过原点

  I() 从算术的角度来解释括号中的表达式,例如,z~y+I(x^2) 表示的拟合公式是 z=a+by+cx2

  function 可以在表达式中应用数学函数,例如,log(z) ~x+y

  对于拟合后的模型(lm函数返回的对象),可以应用下面的函数,得到模型的更多额外的信息。

  summary() 展示拟合模型的详细结果

  coefficients() 列出捏模型的参数(截距项intercept和斜率)

  confint() 提供模型参数的置信区间

  residuals() 列出拟合模型的残差值

  fitted() 列出拟合模型的预测值

  anova() 生成一个拟合模型的方差分析表

  predict() 用拟合模型对新的数据预测响应变量

学习交流群483787113;进群暗号樱桃

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

数据分析:OLS回归分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

我用Excel发现了数据分析的本质:回归分析

其实绝大多数的数据分析问题,都可以归纳为一个问题:相关性问题。相关性分析是数据统计学中的基础思想,主要就是为了探究数据之间是否具有关联性,简单说就是X与Y或者X与Y、Z等之间的变化是否有关联。

数据分析算法---线性回归(初识)

最近在学习数据分析线性回归算法时,产生了很多疑问。作为初学者,我认为应该先从基本概念上进行一些深度理解。下面将我的一些思考总结如下:        线性回归模型为: (1)        其中ε是剩余误差,假设它服从的是高斯分布,然后因此就
2023-01-30

如何优化数据库的数据回归分析

要优化数据库的数据回归分析,可以采取以下措施:数据清洗:对数据库中的数据进行清洗,包括去除缺失值、异常值和重复值,确保数据的准确性和完整性。数据预处理:对数据库中的数据进行预处理,包括数据标准化、归一化、降维等操作,以提高数据的质量和准确性
如何优化数据库的数据回归分析
2024-07-03

Python线性回归分析

这篇文章主要介绍“Python线性回归分析”,在日常操作中,相信很多人在Python线性回归分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python线性回归分析”的疑惑有所帮助!接下来,请跟着小编一起来
2023-06-25

如何用Python进行回归分析与相关分析

这篇文章主要介绍了如何用Python进行回归分析与相关分析,这两部分内容会放在一起讲解,文中提供了解决思路以及部分实现代码,需要的朋友可以参考下
2023-03-22

三分钟,看回归分析模型怎么做

总有小伙伴想看分析模型,我们就从最简单的回归分析模型讲起。回归分析是所有分析模型里最浅显,最容易懂的,并且回归分析有很多变化形态,能适用于很多问题场景。今天就一起来看一下。

Python数据分析学习文章归纳

链客,专为开发者而生,有问必答!此文章来自区块链技术社区,未经允许拒绝转载。数据分析如何入门学习How do I learn data analysis with Python?虽然是英文的,不过看一遍很大收获(可以用百度翻译看一下)Num
2023-01-31

如何分析spark-mlib的线性回归

如何分析spark-mlib的线性回归,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。import org.apache.spark.SparkConfimport org.
2023-06-02

R语言逻辑回归的示例分析

这篇文章主要介绍R语言逻辑回归的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!逻辑回归> ###############逻辑回归> setwd("/Users/yaozhilin/Downloads/R_ed
2023-06-14

MATLAB中如何实现线性回归分析

在MATLAB中,可以使用polyfit函数来实现线性回归分析。下面是一个简单的示例代码:% 创建一组样本数据x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];% 进行线性回归分析,返回拟合系数coe
MATLAB中如何实现线性回归分析
2024-04-03

数据分析

是利用数据提取见解和发现趋势的过程。它在各种行业中至关重要,可以推动数据驱动的决策和提高效率。本文将探讨的基础知识,包括数据收集、处理、分析和可视化。
数据分析
2024-03-04

编程热搜

目录