我的编程空间,编程开发者的网络收藏夹
学习永远不晚

pytorch如何实现多项式回归

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

pytorch如何实现多项式回归

这篇文章主要为大家展示了“pytorch如何实现多项式回归”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“pytorch如何实现多项式回归”这篇文章吧。

pytorch实现多项式回归,供大家参考,具体内容如下

一元线性回归模型虽然能拟合出一条直线,但精度依然欠佳,拟合的直线并不能穿过每个点,对于复杂的拟合任务需要多项式回归拟合,提高精度。多项式回归拟合就是将特征的次数提高,线性回归的次数使一次的,实际我们可以使用二次、三次、四次甚至更高的次数进行拟合。由于模型的复杂度增加会带来过拟合的风险,因此需要采取正则化损失的方式减少过拟合,提高模型泛化能力。希望大家可以自己动手,通过一些小的训练掌握pytorch(案例中有些观察数据格式的代码,大家可以自己注释掉)

# 相较于一元线性回归模型,多项式回归可以很好的提高拟合精度,但要注意过拟合风险# 多项式回归方程 f(x) = -1.13x-2.14x^2+3.12x^3-0.01x^4+0.512import torchimport matplotlib.pyplot as pltimport numpy as np# 数据准备(测试数据)x = torch.linspace(-2,2,50)print(x.shape)y = -1.13*x - 2.14*torch.pow(x,2) + 3.15*torch.pow(x,3) - 0.01*torch.pow(x,4) + 0.512plt.scatter(x.data.numpy(),y.data.numpy())plt.show()# 此时输入维度为4维# 为了拼接输入数据,需要编写辅助数据,输入标量x,使其变为矩阵,使用torch.cat拼接def features(x): # 生成矩阵    # [x,x^2,x^3,x^4]    x = x.unsqueeze(1)    print(x.shape)    return torch.cat([x ** i for i in range(1,5)], 1)result = features(x)print(result.shape)# 目标公式用于计算输入特征对应的标准输出# 目标公式的权重如下x_weight = torch.Tensor([-1.13,-2.14,3.15,-0.01]).unsqueeze(1)b = torch.Tensor([0.512])# 得到x数据对应的标准输出def target(x):    return x.mm(x_weight) + b.item()# 新建一个随机生成输入数据和输出数据的函数,用于生成训练数据def get_batch_data(batch_size):    # 生成batch_size个随机的x    batch_x = torch.randn(batch_size)    # 对于每个x要生成一个矩阵    features_x = features(batch_x)    target_y = target(features_x)    return features_x,target_y# 创建模型class PolynomialRegression(torch.nn.Module):    def __init__(self):        super(PolynomialRegression, self).__init__()        # 输入四维度 输出一维度        self.poly = torch.nn.Linear(4,1)    def forward(self, x):        return self.poly(x)# 开始训练模型epochs = 10000batch_size = 32model = PolynomialRegression()criterion = torch.nn.MSELoss()optimizer = torch.optim.SGD(model.parameters(),0.001)for epoch in range(epochs):    print("{}/{}".format(epoch+1,epochs))    batch_x,batch_y = get_batch_data(batch_size)    out = model(batch_x)    loss = criterion(out,batch_y)    optimizer.zero_grad()    loss.backward()    # 更新梯度    optimizer.step()    if (epoch % 100 == 0):        print("Epoch:[{}/{}],loss:{:.6f}".format(epoch,epochs,loss.item()))    if (epoch % 1000 == 0):        predict = model(features(x))        print(x.shape)        print(predict.shape)        print(predict.squeeze(1).shape)        plt.plot(x.data.numpy(),predict.squeeze(1).data.numpy(),"r")        loss = criterion(predict,y)        plt.title("Loss:{:.4f}".format(loss.item()))        plt.xlabel("X")        plt.ylabel("Y")        plt.scatter(x,y)        plt.show()

拟合结果:

pytorch如何实现多项式回归

pytorch如何实现多项式回归

pytorch如何实现多项式回归

pytorch如何实现多项式回归

以上是“pytorch如何实现多项式回归”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注编程网行业资讯频道!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

pytorch如何实现多项式回归

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

pytorch如何实现多项式回归

这篇文章主要为大家展示了“pytorch如何实现多项式回归”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“pytorch如何实现多项式回归”这篇文章吧。pytorch实现多项式回归,供大家参考,具
2023-06-14

Python如何实现多项式回归

今天就跟大家聊聊有关Python如何实现多项式回归,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。python可以做什么Python是一种编程语言,内置了许多有效的工具,Python几
2023-06-26

pytorch实现线性回归和多元回归的方法

本篇内容介绍了“pytorch实现线性回归和多元回归的方法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!最近在学习pytorch,现在把学习
2023-06-14

如何在R语言项目中实现多元线性回归

这期内容当中小编将会给大家带来有关如何在R语言项目中实现多元线性回归,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。输入数据先把数据用excel保存为csv格式放在”我的文档”文件夹打开R软件,不用新建,直
2023-06-08

Python如何实现岭回归

这篇文章主要介绍“Python如何实现岭回归”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python如何实现岭回归”文章能帮助大家解决问题。1 概述1.1 线性回归对于一般地线性回归问题,参数的求
2023-06-26

Python回归树如何实现

本篇内容介绍了“Python回归树如何实现”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!首先导入库import pandas as pdim
2023-06-30

R语言如何实现LASSO回归

小编给大家分享一下R语言如何实现LASSO回归,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!Lasso回归又称为套索回归,是Robert Tibshirani于1
2023-06-09

R语言多元线性回归是什么及如何实现

这篇文章主要介绍“R语言多元线性回归是什么及如何实现”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“R语言多元线性回归是什么及如何实现”文章能帮助大家解决问题。一、模型简介一元线性回归是一个主要影响因
2023-07-02

C语言如何实现多项式相加

这篇文章主要介绍“C语言如何实现多项式相加”,在日常操作中,相信很多人在C语言如何实现多项式相加问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C语言如何实现多项式相加”的疑惑有所帮助!接下来,请跟着小编一起来
2023-06-17

c++显式栈如何实现递归

本篇文章为大家展示了c++显式栈如何实现递归,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。前言在大学的课上老师有教过,也就是用循环来实现递归,现在自己回顾一下并且做一下记录。1. 递归假设有函数A,
2023-06-26

MATLAB中如何实现线性回归分析

在MATLAB中,可以使用polyfit函数来实现线性回归分析。下面是一个简单的示例代码:% 创建一组样本数据x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];% 进行线性回归分析,返回拟合系数coe
MATLAB中如何实现线性回归分析
2024-04-03

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录