我的编程空间,编程开发者的网络收藏夹
学习永远不晚

六个探索性数据分析(EDA)工具,太实用了!

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

六个探索性数据分析(EDA)工具,太实用了!

1. SweetViz

SweetViz是一个开源的 Python 库,可以通过仅两行代码生成美观且高密度的可视化图表,以便快速进行探索性数据分析(EDA)。其输出是一个完全独立的HTML应用程序。

其设计初衷是快速可视化目标数值并比较数据集,帮助快速分析目标特征、训练数据与测试数据之间的差异,以及数据集的结构、特征之间的关系、数据的分布情况等,从而加速数据分析的过程。

下面是一个简单的示例,演示如何使用SweetViz 进行数据探索性分析:

import pandas as pd
import sweetviz as sv
import numpy as np

data = pd.DataFrame({'随机数': np.random.randint(1, 100, 100)})

# 创建SweetViz 报告
report = sv.analyze(data)

# 将报告保存为HTML文件
report.show_html('random_report.html')

2. ydata-profiling

ydata-profiling是一个用于数据探查和分析的 Python 库,可以帮助用户快速了解和分析数据集的内容。通过使用ydata-profiling,用户可以生成关于数据集中各种变量的统计信息、分布情况、缺失值、相关性等方面的报告。这可以帮助用户在数据分析阶段更快地了解数据集的特征,从而更好地进行后续的数据处理和建模工作。

以下是一个简单的示例代码,展示了如何使用ydata-profiling对数据集进行分析:

import pandas as pd
from ydata_profiling import ProfileReport

df = pd.read_csv('data.csv')
profile = ProfileReport(df, title="Profiling Report")

3. DataPrep

Dataprep是一个用于分析、准备和处理数据的开源Python包。DataPrep构建在Pandas和Dask DataFrame之上,可以很容易地与其他Python库集成。

下面是一个简单的示例,演示如何使用DataPrep进行数据探索性分析:

from dataprep.datasets import load_dataset
from dataprep.eda import create_report

df = load_dataset("titanic.csv")
create_report(df).show_browser()

4. AutoViz

Autoviz包可以用一行代码自动可视化任何大小的数据集,并自动生成HTML、bokeh等报告。用户可以与AutoViz包生成的HTML报告进行交互。

以下是一个简单的示例代码,展示了如何使用 AutoViz:

from autoviz.AutoViz_Class import AutoViz_Class

AV = AutoViz_Class()
filename = "" # 如果有文件名,可以在这里指定
sep = "," # 数据集的分隔符
dft = AV.AutoViz(
    filename,
    sep=",",
    depVar="",
    dfte=None,
    header=0,
    verbose=0,
    lowess=False,
    chart_format="svg",
    max_cols_analyzed=30,
    max_rows_analyzed=150000,
    )

5. D-Tale

D-Tale 是一个结合了 Flask 后端和 React 前端的工具,为用户提供了一种轻松查看和分析 Pandas 数据结构的方式。它与 Jupyter 笔记本和 Python/IPython 终端完美集成。目前,该工具支持 Pandas 的数据结构,包括 DataFrame、Series、MultiIndex、DatetimeIndex 和 RangeIndex。用户可以通过 D-Tale 在浏览器中直观地查看数据、生成统计信息、创建可视化图表,并进行一些数据处理操作。D-Tale 的结构使得数据分析变得更加直观和便捷,为用户提供了一种高效的数据探索和分析工具。

6. Dabl

Dabl不太关注单个列的统计度量,而是更多地关注通过可视化提供快速概述,以及方便的机器学习预处理和模型搜索。Dabl中的Plot()函数可以通过绘制各种图来实现可视化,包括:

  • 目标分布图
  • 散射对图
  • 线性判别分析

以下是一个简单的示例代码,展示了如何使用Dabl:

import pandas as pd
import dabl

df = pd.read_csv("titanic.csv")
dabl.plot(df, target_col="Survived")

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

六个探索性数据分析(EDA)工具,太实用了!

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

六个探索性数据分析(EDA)工具,太实用了!

在本文中将介绍六个极其实用的探索性数据分析(EDA)工具,这些工具能够帮助您更好地理解数据、发现隐藏的信息,并为后续分析和决策提供有力支持。

时间序列预测:探索性数据分析和特征工程的实用指南

时间序列分析是数据科学和机器学习领域最广泛的主题之一:无论是预测金融事件、能源消耗、产品销售还是股票市场趋势,这一领域一直是企业非常感兴趣的领域。

SQL、Pandas和Spark:这个库,实现了三大数据分析工具的大一统

由于Spark是基于Scala语言实现的大数据组件,而Scala语言又是运行在JVM虚拟机上的,所以Spark自然依赖JDK,截止目前为止JDK8依然可用,而且几乎是安装各大数据组件时的首选。所以搭建pyspark环境首先需要安装JDK8,

阿里云数据库分析库了解这个强大工具的用途和优势

阿里云数据库分析库是一款专为企业级数据库设计的分析工具,它可以帮助企业快速分析海量数据库数据,提高数据处理效率和准确性。正文:随着大数据和云计算的发展,数据库成为了企业的重要存储和处理工具。但是,面对海量的数据,如何快速有效地进行分析和处理,成为了企业面临的一个重要问题。为了解决这个问题,阿里云推出了一款专门针对
阿里云数据库分析库了解这个强大工具的用途和优势
2023-11-20

热门标签

编程热搜

编程资源站

目录