我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python数据分析之彩票的历史数据

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python数据分析之彩票的历史数据

一、需求介绍

该需求主要是分析彩票的历史数据

客户的需求是根据彩票的前两期的情况,如果存在某个斜着的两个数字相等,那么就买第三期的同一个位置处的彩票

对于1、,如果相等的数字是:1-5,那就买6-10,如果相等的数字是:6-10,那就买1-5;

对于2、,如果相等的数字是:1-5,那就买1-5,如果相等的数字是:6-10,,那就买6-10。

在这里插入图片描述
在这里插入图片描述

然后,根据这个方案,有可能会买中,但是也有可能买不中,于是,客户希望我可以统计出来在100天中,按照这种方法,连续6次以及6次以上的购买彩票才能够命中一次奖的次数以及分别所对应的时间,对于这个案例,我们下面详细分析。

二、数据分析

(在这里,我们先利用 Jupyter Notebook 来进行分析,然后,在得到成果以后,利用 Pycharm 来进行完整的程序设计。)

2.1 获取一天的数据

打开如下图所示的界面可以获取到网址以及请求头:

网址(历史数据的网址)

在这里插入图片描述

请求头

在这里插入图片描述

然后我们在程序中进行代码书写获取数据:

在这里插入图片描述

在这里插入图片描述

然后进行一定的预处理:

在这里插入图片描述

2.2 开始一天的数据的分析

这里我们直接展示代码:


def reverse_list(lst):
    """
    准换列表的先后顺序
    :param lst: 原始列表
    :return: 新的列表
    """
    return [ele for ele in reversed(lst)]



low_list = ["01", "02", "03", "04", "05"]
# 设置比较小的数字的列表
high_list = ["06", "07", "08", "09", "10"]
# 设置比较大的数字的列表
N = 0
# 设置一个数字N来记录一共有多少期可以购买
n = 0
# 设置一个数字n来记录命中了多少期彩票
record_number = 1  
# 设置记录数据的一个判断值
list_data_number = []
# 设置一个空的列表来存储一天之中的连续挂掉的期数
dict_time_record = {}
# 设置一个空的字典来存储连挂掉的期数满足所列条件的时间节点
for k in range(1152):  
    # 循环遍历所有的数据点
    if k < 1150:
        new_result1 = reverse_list(new_response["result"]["data"])[k]  
        # 第一期数据
        new_result2 = reverse_list(new_response["result"]["data"])[k + 1]  
        # 第二期数据
        new_result3 = reverse_list(new_response["result"]["data"])[k + 2]  
        # 第三期数据
        data1 = new_result1['preDrawCode'].split(',')
        # 第一期数据
        data2 = new_result2['preDrawCode'].split(',')
        # 第二期数据
        data3 = new_result3['preDrawCode'].split(',')
        # 第三期数据
        for m in range(10):
            # 通过循环来判断是否满足购买的条件,并且实现一定的功能
            if m == 0:
                if data2[0] == data1[1]:  
                    # 如果相等就要结束循环
                    N += 1
                    # 可以购买的期数应该要自加一
                    if (data2[0] in low_list and data3[0] in low_list) or (data2[0] in high_list and data3[0] in high_list):
                        n += 1
                        # 命中的期数应该要自加一
                        # 如果命中了的话,本轮结束,开启下一轮
                        list_data_number.append(record_number)
                        if f"{record_number}" in dict_time_record.keys():
                            # 如果已经有了这个键,那么值添加时间点
                            dict_time_record[f"{record_number}"].append(new_result3['preDrawTime'][11:])
                        else:
                            # 如果没有这个键,那么添加一个键值对,值为一个列表,而且初始化为当前的时间
                            dict_time_record[f"{record_number}"] = [new_result3['preDrawTime'][11:]]
                        record_number = 1  
                        # 初始化下一轮的开始
                    else:
                        record_number += 1  
                        # 如果没有命中的话,次数就应该要自加一
                    break  
                    # 如果满足相等的条件就要结束循环
            elif m == 9:  
                # 与上面差不多的算法
                if data2[9] == data1[8]:  
                    # 如果相等
                    N += 1
                    if (data2[9] in low_list and data3[9] in low_list) or (data2[9] in high_list and data3[9] in high_list):
                        n += 1
                        list_data_number.append(record_number)
                        if f"{record_number}" in dict_time_record.keys():
                            dict_time_record[f"{record_number}"].append(new_result3['preDrawTime'][11:])
                        else:
                            dict_time_record[f"{record_number}"] = [new_result3['preDrawTime'][11:]]
                        record_number = 1
                    else:
                        record_number += 1
                    break
            else:  
                # 与上面差不多的算法
                if data2[m] == data1[m + 1] or data2[m] == data1[m - 1]:  
                    # 如果相等
                    N += 1
                    if (data2[m] in low_list and data3[m] in low_list) or (data2[m] in high_list and data3[m] in high_list):
                        n += 1
                        list_data_number.append(record_number)
                        if f"{record_number}" in dict_time_record.keys():
                            dict_time_record[f"{record_number}"].append(new_result3['preDrawTime'][11:])
                        else:
                            dict_time_record[f"{record_number}"] = [new_result3['preDrawTime'][11:]]
                        record_number = 1
                    else:
                        record_number += 1
                    break
print(f"日期:{new_response['result']['data'][0]['preDrawTime'][:10]},总的梯子数为{N}个,一共有{n}次命中,一共有{N - n}次挂了")
# 打印时间,以及,可以购买的期数,命中的期数,没有命中的期数
list_data_number.sort()
# 按照大小顺序来进行排序
dict_record = {}
# 设置空字典进行记录
for i in list_data_number:
    if f"{i}" in dict_record.keys():  # 判断是否已经有了这个数字?
        dict_record[f"{i}"] += 1
        # 如果有的话,那么就会自加一
    else:  # 如果没有的话,那么就会创建并且赋值等于 1
        dict_record[f"{i}"] = 1
        # 创建一个新的字典元素,然后进行赋值为 1
for j in dict_record.keys():
    if (int(j) >= 6) and (int(j) < 15):
        # 实际的结果表明,我们需要的是大于等于6期的数据,而没有出现大于15的数据,因此有这样的一个关系式
        print(f"买{j}次才中奖的次数为{dict_record[j]}")
        # 打印相关信息
        print(dict_time_record[j])
        str0 = ""
        for letter in dict_time_record[j]:
            str0 += letter
            str0 += ", "
        print(str0)
        # 打印相关信息

运行结果的展示如下图所示:

在这里插入图片描述

2.3 循环日期进行多天的数据分析:

首先设置一个事件列表来记录需要统计哪些天的数据:

代码:


data_list = []
for h in range(31):
    data_list.append(f'1-{h + 1}')
for h in range(28):
    data_list.append(f'2-{h + 1}')
for h in range(31):
    data_list.append(f'3-{h + 1}')
for h in range(20):
    data_list.append(f'4-{h + 1}')

通过上述的代码,我们即实现了时间列表的设置,然后我们循环遍历这个列表访问不同日期的彩票数据即就是得到了不同时间的数据,然后再利用上述的分析方法来进行数据分析,即就是可以得到了多天的彩票数据分析的结果了。

2.4 将数据写入Excel表格中

这里我们可以采用xlwt 模块来进行excel表格的写入操作啦,具体的写入就不必过多赘述了。

三、完整代码

以下是完整的代码:


import requests
import chardet
import json
import xlwt  # excel 表格数据处理的对应模块


def reverse_list(lst):
    """
    准换列表的先后顺序
    :param lst: 原始列表
    :return: 新的列表
    """
    return [ele for ele in reversed(lst)]


data_list = []
for h in range(31):
    data_list.append(f'1-{h + 1}')
for h in range(28):
    data_list.append(f'2-{h + 1}')
for h in range(31):
    data_list.append(f'3-{h + 1}')
for h in range(20):
    data_list.append(f'4-{h + 1}')


wb = xlwt.Workbook()  # 创建 excel 表格
sh = wb.add_sheet('彩票分析数据处理')  # 创建一个 表单
sh.write(0, 0, "日期")
sh.write(0, 1, "梯子数目")
sh.write(0, 2, "命中数目")
sh.write(0, 3, "挂的数目")
sh.write(0, 4, "6次中的数目")
sh.write(0, 5, "6次中的时间")
sh.write(0, 6, "7次中的数目")
sh.write(0, 7, "7次中的时间")
sh.write(0, 8, "8次中的数目")
sh.write(0, 9, "8次中的时间")
sh.write(0, 10, "9次中的数目")
sh.write(0, 11, "9次中的时间")
sh.write(0, 12, "10次中的数目")
sh.write(0, 13, "10次中的时间")
sh.write(0, 14, "11次中的数目")
sh.write(0, 15, "11次中的时间")
sh.write(0, 16, "12次中的数目")
sh.write(0, 17, "12次中的时间")
sh.write(0, 18, "13次中的数目")
sh.write(0, 19, "13次中的时间")
sh.write(0, 20, "14次中的数目")
sh.write(0, 21, "14次中的时间")
# wb.save('test4.xls')


sheet_seek_position = 1
# 设置表格的初始位置为 1
for data in data_list:
    low_list = ["01", "02", "03", "04", "05"]
    high_list = ["06", "07", "08", "09", "10"]
    N = 0
    n = 0
    url = f'https://api.api68.com/pks/getPksHistoryList.do?date=2021-{data}&lotCode=10037'
    headers = {
        'User-Agent':
            'Mozilla/5.0 (Windows NT 10.0; Win64; x64) '
            'AppleWebKit/537.36 (KHTML, like Gecko) '
            'Chrome/90.0.4430.72 Safari/537.36'
    }
    response = requests.get(url=url, headers=headers)
    response.encoding = chardet.detect(response.content)['encoding']
    new_response = json.loads(response.text)
    sh.write(sheet_seek_position, 0, new_response['result']['data'][0]['preDrawTime'][:10])
    # 在表格的第一个位置处写入时间,意即:data
    record_number = 1  # 记录数据的一个判断值,设置为第一次,应该是要放在最外面的啦
    list_data_number = []
    # 设置一个空列表来存储一天之中的连续挂的期数
    dict_time_record = {}
    for k in range(1152):
        # record_number = 1,应该要放外面
        # 记录数据的一个判断值,设置为第一次
        if k < 1150:
            new_result1 = reverse_list(new_response["result"]["data"])[k]
            new_result2 = reverse_list(new_response["result"]["data"])[k + 1]
            new_result3 = reverse_list(new_response["result"]["data"])[k + 2]
            data1 = new_result1['preDrawCode'].split(',')
            data2 = new_result2['preDrawCode'].split(',')
            data3 = new_result3['preDrawCode'].split(',')
            for m in range(10):
                if m == 0:
                    if data2[0] == data1[1]:

                        N += 1
                        if (data2[0] in low_list and data3[0] in high_list) or (data2[0] in high_list and data3[0] in low_list):
                            n += 1
                            # 如果命中了的话,本轮结束,开启下一轮
                            list_data_number.append(record_number)

                            if f"{record_number}" in dict_time_record.keys():
                                dict_time_record[f"{record_number}"].append(new_result3['preDrawTime'][11:])
                            else:
                                dict_time_record[f"{record_number}"] = [new_result3['preDrawTime'][11:]]


                            # print(record_number)
                            record_number = 1  # 初始化
                        else:
                            record_number += 1  # 没中,次数加一
                            # 自加一
                        break
                elif m == 9:
                    if data2[9] == data1[8]:
                        N += 1
                        if (data2[9] in low_list and data3[9] in high_list) or (data2[9] in high_list and data3[9] in low_list):
                            n += 1
                            list_data_number.append(record_number)

                            if f"{record_number}" in dict_time_record.keys():
                                dict_time_record[f"{record_number}"].append(new_result3['preDrawTime'][11:])
                            else:
                                dict_time_record[f"{record_number}"] = [new_result3['preDrawTime'][11:]]


                            # print(record_number)
                            record_number = 1
                        else:
                            record_number += 1
                        break
                else:
                    if data2[m] == data1[m + 1] or data2[m] == data1[m - 1]:
                        N += 1
                        if (data2[m] in low_list and data3[m] in high_list) or (data2[m] in high_list and data3[m] in low_list):
                            n += 1
                            list_data_number.append(record_number)

                            if f"{record_number}" in dict_time_record.keys():
                                dict_time_record[f"{record_number}"].append(new_result3['preDrawTime'][11:])
                            else:
                                dict_time_record[f"{record_number}"] = [new_result3['preDrawTime'][11:]]


                            # print(record_number)
                            record_number = 1
                        else:
                            record_number += 1
                        break
    print(f"日期:{new_response['result']['data'][0]['preDrawTime'][:10]},总的梯子数为{N}个,一共有{n}次命中,一共有{N - n}次挂了")
    sh.write(sheet_seek_position, 1, N)
    sh.write(sheet_seek_position, 2, n)
    sh.write(sheet_seek_position, 3, N - n)

    # new_list_data_number = list_data_number.sort()
    list_data_number.sort()
    # 进行排序
    dict_record = {}
    # 设置空字典

    for i in list_data_number:
        if f"{i}" in dict_record.keys():  # 判断是否已经有了这个数字?
            dict_record[f"{i}"] += 1
            # 如果有的话,那么就会自加一
        else:  # 如果没有的话,那么就会创建并且赋值等于 1
            dict_record[f"{i}"] = 1
            # 创建一个新的字典元素,然后进行赋值为 1
    # print(dict_record)
    # print(f"买彩票第几次才中奖?")
    # print(f"按照我们的规律买彩票的情况:")
    for j in dict_record.keys():
        if (int(j) >= 6) and (int(j) < 15):
            print(f"买{j}次才中奖的次数为{dict_record[j]}")
            print(dict_time_record[j])
            str0 = ""
            for letter in dict_time_record[j]:
                str0 += letter
                str0 += ", "
            print(str0)
            sh.write(sheet_seek_position, 4 + (int(j) - 6) * 2, dict_record[j])
            # 写入几次
            sh.write(sheet_seek_position, 4 + (int(j) - 6) * 2 + 1, str0[:-2])  
            # 注意这里应该要改为 -2
            # 写入几次对应的时间
            # print(j)
    sheet_seek_position += 1
    # 每次写完了以后,要对位置进行换行,换到下一行,从而方便下一行的写入


# 保存
wb.save('极速飞艇彩票分析结果.xls')

四、运行结果

展示1、

在这里插入图片描述

展示2、

在这里插入图片描述

从而,我们便解决了极速飞艇的彩票的数据分析

然后,我们只需要稍稍改变一点点算法,其他的部分是完全一样的啦,从而即就是可以实现极速赛车的数据分析了啦。
修改的代码在下面列出来了:


  for m in range(10):
                if m == 0:
                    if data2[0] == data1[1]:

                        N += 1
                        if (data2[0] in low_list and data3[0] in low_list) or (data2[0] in high_list and data3[0] in high_list):
                            n += 1
                            # 如果命中了的话,本轮结束,开启下一轮
                            list_data_number.append(record_number)

                            if f"{record_number}" in dict_time_record.keys():
                                dict_time_record[f"{record_number}"].append(new_result3['preDrawTime'][11:])
                            else:
                                dict_time_record[f"{record_number}"] = [new_result3['preDrawTime'][11:]]


                            # print(record_number)
                            record_number = 1  # 初始化
                        else:
                            record_number += 1  # 没中,次数加一
                            # 自加一
                        break
                elif m == 9:
                    if data2[9] == data1[8]:
                        N += 1
                        if (data2[9] in low_list and data3[9] in low_list) or (data2[9] in high_list and data3[9] in high_list):
                            n += 1
                            list_data_number.append(record_number)

                            if f"{record_number}" in dict_time_record.keys():
                                dict_time_record[f"{record_number}"].append(new_result3['preDrawTime'][11:])
                            else:
                                dict_time_record[f"{record_number}"] = [new_result3['preDrawTime'][11:]]


                            # print(record_number)
                            record_number = 1
                        else:
                            record_number += 1
                        break
                else:
                    if data2[m] == data1[m + 1] or data2[m] == data1[m - 1]:
                        N += 1
                        if (data2[m] in low_list and data3[m] in low_list) or (data2[m] in high_list and data3[m] in high_list):
                            n += 1
                            list_data_number.append(record_number)

                            if f"{record_number}" in dict_time_record.keys():
                                dict_time_record[f"{record_number}"].append(new_result3['preDrawTime'][11:])
                            else:
                                dict_time_record[f"{record_number}"] = [new_result3['preDrawTime'][11:]]


                            # print(record_number)
                            record_number = 1
                        else:
                            record_number += 1
                        break

五、总结

总而言之,这个就是我学习 Python 到现在为止所接的第一单啦,这个需求不得不说确实是比较简单的啦,但是,我在完成这个任务的过程中,的确是学到了以前一些我并不太注意的东西,同时呢,也熟练的掌握了一些编程的技巧,虽然说这种比较简单的活报酬不会太高,但是,我认为在这个过程中我确实学到了不少东西,同时也成长了不少,因此,无论怎么说,其实也都还是挺不错的啦。

到此这篇关于Python数据分析之彩票的历史数据的文章就介绍到这了,更多相关python分析彩票数据内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python数据分析之彩票的历史数据

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python实现股票历史数据可视化分析案例

目录1 数据预处理1.1 股票历史数据csv文件读取1.2 关键数据——在csv文件中选择性提取“列”1.3 数据类型转换1.4 数据按列提取并累加性存入列表2 pyecharts实现数据可视化2.1 导入库2.2 初始化画布2.3 根据需
2022-06-03

python如何实现股票历史数据可视化示例

这篇文章主要介绍python如何实现股票历史数据可视化示例,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!投资有风险,选择需谨慎。 股票交易数据分析可直观股市走向,对于如何把握股票行情,快速解读股票交易数据有不可替代的
2023-06-15

C/C++中Qt数据库与Chart历史数据展示的示例分析

这篇文章主要为大家展示了“C/C++中Qt数据库与Chart历史数据展示的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“C/C++中Qt数据库与Chart历史数据展示的示例分析”这篇文章
2023-06-25

python数据分析之pandas数据选

Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用。本文主要介绍Pandas的几种数据选取的方法。  Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式
2023-01-30

Python数据分析之pandas读取数据

一、三种数据文件的读取二、csv、tsv、txt 文件读取 1)CSV文件读取: 语法格式:pandas.read_csv(文件路径) CSV文件内容如下:import pandas as pd file_path = "e:\\panda
2022-06-02

阿里云数据库历史性盈利分析报告

简介阿里云数据库是阿里巴巴集团旗下的云计算服务品牌,提供了一系列的数据库产品和服务。本文将对阿里云数据库的历史性盈利情况进行分析,并探讨其在市场竞争中的优势。阿里云数据库的历史性盈利情况阿里云数据库自成立以来,一直保持着强劲的增长势头。根据最新的财务数据,阿里云数据库在过去几年中实现了持续的盈利增长。这主要得益于以下几
阿里云数据库历史性盈利分析报告
2024-01-30

浅析数据库的历史,你了解了吗?

随着硬件技术、应用场景等不断的变化,最近的这些年,在不同的领域,不同的应用方向,诞生了很多不同类型的数据库。例如多模数据库(Multi-Model)、区块链数据库(Blockchain)、流式处理数据库(Streaming)等等。

Python数据分析之Pandas Dataframe条件筛选遍历的方法

这篇文章主要介绍“Python数据分析之Pandas Dataframe条件筛选遍历的方法”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe条件筛选
2023-06-30

如何在Prometheus中展示历史数据和趋势分析

要在Prometheus中展示历史数据和趋势分析,可以通过Prometheus提供的查询语言PromQL来实现。以下是一些步骤可以帮助您展示历史数据和趋势分析:使用PromQL查询历史数据:您可以使用PromQL查询语言来检索历史数据。例如
如何在Prometheus中展示历史数据和趋势分析
2024-03-04

Python数据分析:数据驱动成功之路

数据分析是信息时代的关键技能,而 Python 已成为数据分析领域不可或缺的工具。Python 提供了广泛的库和工具,使数据探索、建模和可视化变得容易,为数据驱动决策和成功铺平了道路。
Python数据分析:数据驱动成功之路
2024-02-17

Python数据分析库之pandas,你

写这个系列背后的故事咦,面试系列的把基础部分都写完啦,哈哈答,接下来要弄啥嘞~pandas吧外国人开发的翻译成汉语叫 熊猫厉害厉害,很接地气一个基于numpy的库干啥的?做数据分析用的而数据分析是python体系下一个非常庞大的分支厉害到,
2023-01-31

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录