我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python数据分析之pandas数据选

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python数据分析之pandas数据选

  Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用。本文主要介绍Pandas的几种数据选取的方法。

  Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍。

  在Dataframe中选取数据大抵包括3中情况:

  1)行(列)选取(单维度选取):df[]。这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件)。

  2)区域选取(多维选取):df.loc[],df.iloc[],df.ix[]。这种方式可以同时为多个维度设置筛选条件。

  3)单元格选取(点选取):df.at[],df.iat[]。准确定位一个单元格。

  接下来,我们以下面的数据为例,分别通过实例介绍这三种情况。

 

>>> import pandas as pd

>>> import numpy as np

>>> data = {'name': ['Joe', 'Mike', 'Jack', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jason', 'Even'],

        'age': [25, 32, 18, np.nan, 15, 20, 41, np.nan, 37, 32],

        'gender': [1, 0, 1, 1, 0, 1, 0, 0, 1, 0],

        'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}

>>> labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

>>> df = pd.DataFrame(data, index=labels)

>>> df

    name   age  gender isMarried

a    Joe  25.0       1       yes

b   Mike  32.0       0       yes

c   Jack  18.0       1        no

d   Rose   NaN       1       yes

e  David  15.0       0        no

f  Marry  20.0       1        no

g  Wansi  41.0       0        no

h   Sidy   NaN       0       yes

i  Jason  37.0       1        no

j   Even  32.0       0        no

  行(列)选取是在单一维度上进行数据的选取,即以行为单位进行选取或者以列为单位进行选取。Dataframe对象的行有索引(index),默认情况下是[0,1,2,……]的整数序列,也可以自定义添加另外的索引,例如上面的labels,(为区分默认索引和自定义的索引,在本文中将默认索引称为整数索引,自定义索引称为标签索引)。Dataframe对象的每一列都有列名,可以通过列名实现对列的选取。

  1)选取行

选取行的方式包括三种:整数索引切片、标签索引切片和布尔数组。

  a)整数索引切片:前闭后开

  • 选取第一行:
>>> df[0:1]

  name   age  gender isMarried

a  Joe  25.0       1       yes
  • 选取前两行:
>>> df[0:2]

   name   age  gender isMarried

a   Joe  25.0       1       yes

b  Mike  32.0       0       yes

  b)标签索引切片:前闭后闭

  • 选取第一行:
>>> df[:'a']

  name   age  gender isMarried

a  Joe  25.0       1       yes
  • 选取前两行:
>>> df['a':'b']

   name   age  gender isMarried

a   Joe  25.0       1       yes

b  Mike  32.0       0       yes

  注意:整数索引切片是前闭后开,标签索引切片是前闭后闭,这点尤其要注意。

  c)布尔数组

  • 选取前三行
>>> df[[True,True,True,False,False,False,False,False,False,False]]

   name   age  gender isMarried

a   Joe  25.0       1       yes

b  Mike  32.0       0       yes

c  Jack  18.0       1        no
  • 选取所有age大于30的行
>>> df[[each>30 for each in df['age']]]

    name   age  gender isMarried

b   Mike  32.0       0       yes

g  Wansi  41.0       0        no

i  Jason  37.0       1        no

j   Even  32.0       0        no

  通过布尔数组的方式,又可以衍生出下面的选取方式:

  • 选取所有age大于30的行
>>> df[df['age']>30]

    name   age  gender isMarried

b   Mike  32.0       0       yes

g  Wansi  41.0       0        no

i  Jason  37.0       1        no

j   Even  32.0       0        no
  • 选取出所有age大于30,且isMarried为no的行
>>> df[(df['age']>30) & (df['isMarried']=='no')]

    name   age  gender isMarried

g  Wansi  41.0       0        no

i  Jason  37.0       1        no

j   Even  32.0       0        no
  • 选取出所有age为20或32的行
>>> df[(df['age']==20) | (df['age']==32)]

    name   age  gender isMarried

b   Mike  32.0       0       yes

f  Marry  20.0       1        no

j   Even  32.0       0        no

  注意:像上面这种通过多个布尔条件判断的情况,多个条件最好(一定)用括号括起来,否则非常容易出错。

  2)列选取

  列选取方式也有三种:标签索引、标签列表、Callable对象

  a)标签索引:选取单个列

  • 选取name列所有数据
>>> df['name']

a      Joe

b     Mike

c     Jack

d     Rose

e    David

f    Marry

g    Wansi

h     Sidy

i    Jason

j     Even

Name: name, dtype: object

  b)标签列表:选取多个列

  • 选取name和age两列数据
>>> df[['name','age']]

    name   age

a    Joe  25.0

b   Mike  32.0

c   Jack  18.0

d   Rose   NaN

e  David  15.0

f  Marry  20.0

g  Wansi  41.0

h   Sidy   NaN

i  Jason  37.0

j   Even  32.0

  c)callable对象

  • 选取第一列
>>> df[lambda df: df.columns[0]]

a      Joe

b     Mike

c     Jack

d     Rose

e    David

f    Marry

g    Wansi

h     Sidy

i    Jason

j     Even

Name: name, dtype: object

  区域选取可以从多个维度(行和列)对数据进行筛选,可以通过df.loc[],df.iloc[],df.ix[]三种方法实现。采用df.loc[],df.iloc[],df.ix[]这三种方法进行数据选取时,方括号内必须有两个参数,第一个参数是对行的筛选条件,第二个参数是对列的筛选条件,两个参数用逗号隔开。df.loc[],df.iloc[],df.ix[]的区别如下:

  df.loc[]只能使用标签索引,不能使用整数索引,通过便签索引切边进行筛选时,前闭后闭。

  df.iloc[]只能使用整数索引,不能使用标签索引,通过整数索引切边进行筛选时,前闭后开。;

  df.ix[]既可以使用标签索引,也可以使用整数索引。

  下面分别通过实例演示这三种方法。

3.1 df.loc[]

  1)对行进行选取

  • 选取索引为‘a’的行:
>>> df.loc['a', :]

name         Joe

age           25

gender         1

isMarried    yes

Name: a, dtype: object
  • 选取索引为‘a’或‘b’或‘c’的行
>>> df.loc[['a','b','c'], :]

   name   age  gender isMarried

a   Joe  25.0       1       yes

b  Mike  32.0       0       yes

c  Jack  18.0       1        no
  • 选取从‘a’到‘d’的所有行(包括‘d’行)
>>> df.loc['a':'d', :]

   name   age  gender isMarried

a   Joe  25.0       1       yes

b  Mike  32.0       0       yes

c  Jack  18.0       1        no

d  Rose   NaN       1       yes
  • 用布尔数组选取前3行
>>> df.loc[[True,True,True,False,False,False], :]

   name   age  gender isMarried

a   Joe  25.0       1       yes

b  Mike  32.0       0       yes

c  Jack  18.0       1        no
  • 选取所有age大于30的行
>>> df.loc[df['age']>30,:]

    name   age  gender isMarried

b   Mike  32.0       0       yes

g  Wansi  41.0       0        no

i  Jason  37.0       1        no

j   Even  32.0       0        no

  也可以使用下面两方法:

>>> df.loc[df.loc[:,'age']>30, :]

    name   age  gender isMarried

b   Mike  32.0       0       yes

g  Wansi  41.0       0        no

i  Jason  37.0       1        no

j   Even  32.0       0        no

>>> df.loc[df.iloc[:,1]>30, :]

    name   age  gender isMarried

b   Mike  32.0       0       yes

g  Wansi  41.0       0        no

i  Jason  37.0       1        no

j   Even  32.0       0        no
  • 用callable对象选取age大于30的所有行
>>> df.loc[lambda df:df['age'] > 30, :]

    name   age  gender isMarried

b   Mike  32.0       0       yes

g  Wansi  41.0       0        no

i  Jason  37.0       1        no

j   Even  32.0       0        no

  2)对列选取

  • 输出所有人的姓名(选取name列)
>>> df.loc[:, 'name']

a      Joe

b     Mike

c     Jack

d     Rose

e    David

f    Marry

g    Wansi

h     Sidy

i    Jason

j     Even

Name: name, dtype: object
  • 输出所有人的姓名和年龄(选取name和age列)
>>> df.loc[:, 'name':'age']

    name   age

a    Joe  25.0

b   Mike  32.0

c   Jack  18.0

d   Rose   NaN

e  David  15.0

f  Marry  20.0

g  Wansi  41.0

h   Sidy   NaN

i  Jason  37.0

j   Even  32.0
  • 输出所有人的姓名、年龄、婚否(选取name、age、isMarried列)
>>> df.loc[:, ['name','age','isMarried']]

    name   age isMarried

a    Joe  25.0       yes

b   Mike  32.0       yes

c   Jack  18.0        no

d   Rose   NaN       yes

e  David  15.0        no

f  Marry  20.0        no

g  Wansi  41.0        no

h   Sidy   NaN       yes

i  Jason  37.0        no

j   Even  32.0        no
  • 用布尔数组的方式选取前3列
>>> df.loc[:, [True,True,True,False]]

    name   age  gender

a    Joe  25.0       1

b   Mike  32.0       0

c   Jack  18.0       1

d   Rose   NaN       1

e  David  15.0       0

f  Marry  20.0       1

g  Wansi  41.0       0

h   Sidy   NaN       0

i  Jason  37.0       1

j   Even  32.0       0

  3)同时对行和列进行筛选

  • 输出年龄大于30的人的姓名和年龄
>>> df.loc[df['age']>30,['name','age']]

    name   age

b   Mike  32.0

g  Wansi  41.0

i  Jason  37.0

j   Even  32.0
  • 输出行名为‘Mike’或‘Marry’的姓名和年龄
>>> df.loc[(df['name']=='Mike') |(df['name']=='Marry'),['name','age']]                                                    

    name   age

b   Mike  32.0

f  Marry  20.0

3.2 df.iloc[]

  1)行选取

  • 选取第2行
>>> df.iloc[1, :]

name         Mike

age            32

gender          0

isMarried     yes

Name: b, dtype: object
  • 选取前3行
>>> df.iloc[:3, :]

   name   age  gender isMarried

a   Joe  25.0       1       yes

b  Mike  32.0       0       yes

c  Jack  18.0       1        no
  • 选取第2行、第4行、第6行
>>> df.iloc[[1,3,5],:]

    name   age  gender isMarried

b   Mike  32.0       0       yes

d   Rose   NaN       1       yes

f  Marry  20.0       1        no
  • 通过布尔数组选取前3行
>>> df.iloc[[True,True,True,False,False,False], :]

   name   age  gender isMarried

a   Joe  25.0       1       yes

b  Mike  32.0       0       yes

c  Jack  18.0       1        no

  2)列选取

  • 选取第2列
>>> df.iloc[:, 1]

a    25.0

b    32.0

c    18.0

d     NaN

e    15.0

f    20.0

g    41.0

h     NaN

i    37.0

j    32.0

Name: age, dtype: float64
  • 选取前3列
>>> df.iloc[:, 0:3]

    name   age  gender

a    Joe  25.0       1

b   Mike  32.0       0

c   Jack  18.0       1

d   Rose   NaN       1

e  David  15.0       0

f  Marry  20.0       1

g  Wansi  41.0       0

h   Sidy   NaN       0

i  Jason  37.0       1

j   Even  32.0       0

l  选取第1列、第3列、第4列
  • 选取第1列、第3列和第4列
>>> df.iloc[:, [0,2,3]]

    name  gender isMarried

a    Joe       1       yes

b   Mike       0       yes

c   Jack       1        no

d   Rose       1       yes

e  David       0        no

f  Marry       1        no

g  Wansi       0        no

h   Sidy       0       yes

i  Jason       1        no

j   Even       0        no
  • 通过布尔数组选取前3列
>>> df.iloc[:,[True,True,True,False]]
    name   age  gender
a    Joe  25.0       1
b   Mike  32.0       0
c   Jack  18.0       1
d   Rose   NaN       1
e  David  15.0       0
f  Marry  20.0       1
g  Wansi  41.0       0
h   Sidy   NaN       0
i  Jason  37.0       1
j   Even  32.0       0

  3)同时选取行和列

  • 选取第2行的第1列、第3列、第4列
>>> df.iloc[1, [0,2,3]]

name         Mike

gender          0

isMarried     yes

Name: b, dtype: object
  • 选取前3行的前3列
>>> df.iloc[:3, :3]

   name   age  gender

a   Joe  25.0       1

b  Mike  32.0       0

c  Jack  18.0       1

3.3 df.ix[]

  df.ix[]既可以通过整数索引进行数据选取,也可以通过标签索引进行数据选取,换句话说,df.ix[]是df.loc[]和df.iloc[]的功能集合,且在同义词选取中,可以同时使用整数索引和标签索引。

  • 选取第3行的name数据
>>> df.ix[2,'name']

'Jack'
  • 选取a行、c行的第1列,第2列和第4列数据
>>> df.ix[['a','c'], [0,1,3]]

   name   age isMarried

a   Joe  25.0       yes

c  Jack  18.0        no
  • 选取所有未婚者的姓名和年龄
>>> df.ix[df['isMarried']=='no',['name','age']]

    name   age

c   Jack  18.0

e  David  15.0

f  Marry  20.0

g  Wansi  41.0

i  Jason  37.0

j   Even  32.0

  单元格选取包括df.at[]和df.iat[]两种方法。df.at[]和df.iat[]使用时必须输入两个参数,即行索引和列索引,其中df.at[]只能使用标签索引,df.iat[]只能使用整数索引。df.at[]和df.iat[]选取的都是单个单元格(单行单列),所以返回值都为基本数据类型。

4.1 df.at[]

  • 选取b行的name列
>>> df.at['b','name']

'Mike'

4.2 df.iat[]

  • 选取第2行第1列
>>> df.iat[1,0]

'Mike'

  1)选取某一整行(多个整行)或某一整列(多个整列)数据时,可以用df[]、df.loc[]、df.iloc[],此时df[]的方法书写要简单一些。

  2)进行区域选取时,如果只能用标签索引,则使用df.loc[]或df.ix[],如果只能用整数索引,则用df.iloc[]或df.ix[]。不过我看到有资料说,不建议使用df.ix[],因为df.loc[]和df.iloc[]更精确(有吗?我没理解精确在哪,望告知)。

  3)如果选取单元格,则df.at[]、df.iat[]、df.loc[]、df.iloc[]都可以,不过要注意参数。  

  4)选取数据时,返回值存在以下情况:

  • 如果返回值包括单行多列或多行单列时,返回值为Series对象;
  • 如果返回值包括多行多列时,返回值为DataFrame对象;
  • 如果返回值仅为一个单元格(单行单列)时,返回值为基本数据类型,例如str,int等。

  5)df[]的方式只能选取行和列数据,不能精确到单元格,所以df[]的返回值一定DataFrame或Series对象。

  6)当使用DataFrame的默认索引(整数索引)时,整数索引即为标签索引。例如,使用上面的data实例化一个DataFrame对象:

>>> df2 = pd.DataFrame(data)

>>> df2.loc[1,'name']

'Mike'

>>> df2.iloc[1,0]

'Mike'

 

 

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python数据分析之pandas数据选

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python数据分析之pandas数据选

Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用。本文主要介绍Pandas的几种数据选取的方法。  Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式
2023-01-30

Python数据分析之pandas读取数据

一、三种数据文件的读取二、csv、tsv、txt 文件读取 1)CSV文件读取: 语法格式:pandas.read_csv(文件路径) CSV文件内容如下:import pandas as pd file_path = "e:\\panda
2022-06-02

Python数据分析库之pandas,你

写这个系列背后的故事咦,面试系列的把基础部分都写完啦,哈哈答,接下来要弄啥嘞~pandas吧外国人开发的翻译成汉语叫 熊猫厉害厉害,很接地气一个基于numpy的库干啥的?做数据分析用的而数据分析是python体系下一个非常庞大的分支厉害到,
2023-01-31

Python数据分析之pandas比较操作

目录一、比较运算符和比较方法二、两个DataFrame比较三、两个Series比较四、与数字或字符串比较五、与array进行比较一、比较运算符和比较方法 比较运算符用于判断是否相等和比较大小,Python中的比较运算符有==、!=、<、>、
2022-06-02

数据分析之Pandas VS SQL!

编辑:zone来源:数据管道作者:艾德宝器AbstractPandas是一个开源的Python数据分析库,结合 NumPy 和 Matplotlib 类库,可以在内存中进行高性能的数据清洗、转换、分析及可视化工作。对于数据开发工程师或分析师
2023-06-02

数据分析利器之Pandas

Pandas是一个python的开源库,它基于Numpy,提供了多种高性能且易于使用的数据结构。Pandas最初被用作金融数据分析工具而开发,由于它有着强大的功能,目前广泛应用于数据分析、机器学习以及量化投资等。下面来跟随作者一起认识下Pa
2023-06-02

数据分析之pandas模块

一、Series  类似于一位数组的对象,第一个参数为数据,第二个参数为索引(索引可以不指定,就默认用隐式索引)Series(data=np.random.randint(1,50,(10,)))Series(data=[1,2,3],in
2023-01-30

Python数据分析--Pandas知识

本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘1. 重复值的处理利用drop_duplicates()函数删除数据表中重复多余的记录, 比如删除重复多余的ID.1 import pandas as pd2 df
2023-01-30

Python数据分析之Pandas Dataframe条件筛选遍历的方法

这篇文章主要介绍“Python数据分析之Pandas Dataframe条件筛选遍历的方法”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe条件筛选
2023-06-30

Python实践之使用Pandas进行数据分析

在数据分析领域,Python的Pandas库是一个非常强大的工具。这篇文章将为大家详细介绍如何使用Pandas进行数据分析,希望对大家有所帮助
2023-05-18

Python数据分析之Pandas Dataframe如何自定义

今天小编给大家分享一下Python数据分析之Pandas Dataframe如何自定义的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解
2023-06-30

利用Python进行数据分析之初识Pandas

Pandas是构建在Python编程语言之上的一个快速、强大、灵活且易于使用的开源数据分析和操作工具。Pandas是基于Numpy的专业数据分析工具,可以灵活高效的处理各种数据集。

数据分析之Pandas必知必会

Pandas是python中一个非常强大的库,对于数据分析师、数据科学家,乃至任何需要处理和分析数据的专业人士来说,Pandas都是一个不可或缺的工具。本文将为大家介绍Pandas的基础用法,帮助你迈出数据分析的第一步。

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录