我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python数据分析之 Pandas Dataframe应用自定义

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python数据分析之 Pandas Dataframe应用自定义

前言:

在进行数据分析时,难免需要对数据集应用一些我们自定义的一些函数,或者其他库的函数,得到我们想要的数据,这种情况下,可能大家第一时间想到的是使用for循环遍历Dataframe对象,取到指定行/列的数据再进行自定义函数的应用,当然这种方法完全可以实现,但是效率不高,接下来就来介绍一下在Pandas中如何对数据集高效的进行自定义函数的应用。

应用函数

apply 方法

apply()函数是一个自定义函数作用于某一行或几行,或者某一列或多列上的每一个元素, 使用格式如下:

df.apply(func, axis=0, *args, **kwargs)

参数如下:

  • func:指定函数
  • axis:指定作用于行还是列,默认为0,表示作用于列,设置为1表示作用于行
  • *args&**kwargs:接收任意数量、类型的参数,这些参数被传递到函数func

例如,对下面Dataframe执行进行操作:

自定义"返回最大值"的函数并作用于该Dataframe:

def func(x):
    return x.max()
df.apply(func)

结果输出如下:

可见,结果返回了每列最大的值,如果想返回每行最大的值,设置axis=1即可。

当然apply()也支持传递lambda匿名函数。

applymap 方法

applymap()函数可以作用于DataFrame中的每一个元素,例如,转换DataFrame中数据的格式:

df.applymap(lambda x: '%.2f' % x)

注意:Pandas还提供了一个map()方法,作用于Series对象,此类方法和Python原生的map()方法都很类似。

到此这篇关于Python数据分析之 Pandas Dataframe应用自定义的文章就介绍到这了,更多相关Pandas Dataframe应用自定义内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python数据分析之 Pandas Dataframe应用自定义

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python数据分析之Pandas Dataframe如何自定义

今天小编给大家分享一下Python数据分析之Pandas Dataframe如何自定义的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解
2023-06-30

Python数据分析之Pandas Dataframe怎么合并和去重

这篇文章主要介绍“Python数据分析之Pandas Dataframe怎么合并和去重”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe怎么合并和去
2023-06-30

Python数据分析之Pandas Dataframe怎么修改、删除及查询

这篇文章主要介绍“Python数据分析之Pandas Dataframe怎么修改、删除及查询”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe怎么修
2023-06-30

Python数据分析之Pandas Dataframe条件筛选遍历的方法

这篇文章主要介绍“Python数据分析之Pandas Dataframe条件筛选遍历的方法”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe条件筛选
2023-06-30

Python数据分析:pandas中Dataframe的groupby与索引用法

Pandasgroupby操作允许根据键对DataFrame数据进行分组,而索引提供快速查找DataFrame特定行的机制。结合使用可高效分析大型数据集。groupby根据键分组数据,返回按键分组的组,可使用apply()/agg()/transform()方法对组应用聚合函数或操作。索引唯一标识每一行,可通过loc和iloc方法访问和检索行。结合groupby和索引,可以高效执行高级数据操作,如按组索引、迭代和过滤。
Python数据分析:pandas中Dataframe的groupby与索引用法
2024-04-02

python数据分析之pandas数据选

Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用。本文主要介绍Pandas的几种数据选取的方法。  Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式
2023-01-30

Python数据分析Pandas Dataframe排序操作的方法

本文小编为大家详细介绍“Python数据分析Pandas Dataframe排序操作的方法”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python数据分析Pandas Dataframe排序操作的方法”文章能帮助大家解决疑惑,下面跟着小
2023-06-30

python数据分析之怎么用pandas搞定Excel表格

本篇内容主要讲解“python数据分析之怎么用pandas搞定Excel表格”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python数据分析之怎么用pandas搞定Excel表格”吧!(一)读
2023-06-30

Python数据分析库之pandas,你

写这个系列背后的故事咦,面试系列的把基础部分都写完啦,哈哈答,接下来要弄啥嘞~pandas吧外国人开发的翻译成汉语叫 熊猫厉害厉害,很接地气一个基于numpy的库干啥的?做数据分析用的而数据分析是python体系下一个非常庞大的分支厉害到,
2023-01-31

Python数据分析之pandas读取数据

一、三种数据文件的读取二、csv、tsv、txt 文件读取 1)CSV文件读取: 语法格式:pandas.read_csv(文件路径) CSV文件内容如下:import pandas as pd file_path = "e:\\panda
2022-06-02

python数据分析之DataFrame内存优化

目录1. pandas查看数据占用大小2. 对数据进行压缩3. 参考资料今天看案例的时候看见了一个关于pandas数据的内存压缩功能,特地来记录一下。 先说明一下情况,pandas处理几百兆的dataframe是没有问题的,但是我们在处理几
2022-06-02

Python数据分析之pandas比较操作

目录一、比较运算符和比较方法二、两个DataFrame比较三、两个Series比较四、与数字或字符串比较五、与array进行比较一、比较运算符和比较方法 比较运算符用于判断是否相等和比较大小,Python中的比较运算符有==、!=、<、>、
2022-06-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录