我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python数据分析之Pandas Dataframe如何自定义

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python数据分析之Pandas Dataframe如何自定义

今天小编给大家分享一下Python数据分析之Pandas Dataframe如何自定义的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

应用函数

apply 方法

apply()函数是一个自定义函数作用于某一行或几行,或者某一列或多列上的每一个元素, 使用格式如下:

df.apply(func, axis=0, *args, **kwargs)

参数如下:

  • func:指定函数

  • axis:指定作用于行还是列,默认为0,表示作用于列,设置为1表示作用于行

  • *args&**kwargs:接收任意数量、类型的参数,这些参数被传递到函数func

例如,对下面Dataframe执行进行操作:

Python数据分析之Pandas Dataframe如何自定义

自定义"返回最大值"的函数并作用于该Dataframe:

def func(x):    return x.max()df.apply(func)

结果输出如下:

Python数据分析之Pandas Dataframe如何自定义

可见,结果返回了每列最大的值,如果想返回每行最大的值,设置axis=1即可。

当然apply()也支持传递lambda匿名函数。

applymap 方法

applymap()函数可以作用于DataFrame中的每一个元素,例如,转换DataFrame中数据的格式:

df.applymap(lambda x: '%.2f' % x)

Python数据分析之Pandas Dataframe如何自定义

注意:Pandas还提供了一个map()方法,作用于Series对象,此类方法和Python原生的map()方法都很类似。

以上就是“Python数据分析之Pandas Dataframe如何自定义”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python数据分析之Pandas Dataframe如何自定义

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python数据分析之Pandas Dataframe如何自定义

今天小编给大家分享一下Python数据分析之Pandas Dataframe如何自定义的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解
2023-06-30

Python数据分析之Pandas Dataframe怎么合并和去重

这篇文章主要介绍“Python数据分析之Pandas Dataframe怎么合并和去重”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe怎么合并和去
2023-06-30

Python数据分析之Pandas Dataframe怎么修改、删除及查询

这篇文章主要介绍“Python数据分析之Pandas Dataframe怎么修改、删除及查询”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe怎么修
2023-06-30

Python数据分析之Pandas Dataframe条件筛选遍历的方法

这篇文章主要介绍“Python数据分析之Pandas Dataframe条件筛选遍历的方法”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe条件筛选
2023-06-30

python数据分析之pandas数据选

Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用。本文主要介绍Pandas的几种数据选取的方法。  Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式
2023-01-30

Python数据分析Pandas Dataframe排序操作的方法

本文小编为大家详细介绍“Python数据分析Pandas Dataframe排序操作的方法”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python数据分析Pandas Dataframe排序操作的方法”文章能帮助大家解决疑惑,下面跟着小
2023-06-30

Python数据分析库之pandas,你

写这个系列背后的故事咦,面试系列的把基础部分都写完啦,哈哈答,接下来要弄啥嘞~pandas吧外国人开发的翻译成汉语叫 熊猫厉害厉害,很接地气一个基于numpy的库干啥的?做数据分析用的而数据分析是python体系下一个非常庞大的分支厉害到,
2023-01-31

Python数据分析之pandas读取数据

一、三种数据文件的读取二、csv、tsv、txt 文件读取 1)CSV文件读取: 语法格式:pandas.read_csv(文件路径) CSV文件内容如下:import pandas as pd file_path = "e:\\panda
2022-06-02

python数据分析之DataFrame内存优化

目录1. pandas查看数据占用大小2. 对数据进行压缩3. 参考资料今天看案例的时候看见了一个关于pandas数据的内存压缩功能,特地来记录一下。 先说明一下情况,pandas处理几百兆的dataframe是没有问题的,但是我们在处理几
2022-06-02

Python数据分析:pandas中Dataframe的groupby与索引用法

Pandasgroupby操作允许根据键对DataFrame数据进行分组,而索引提供快速查找DataFrame特定行的机制。结合使用可高效分析大型数据集。groupby根据键分组数据,返回按键分组的组,可使用apply()/agg()/transform()方法对组应用聚合函数或操作。索引唯一标识每一行,可通过loc和iloc方法访问和检索行。结合groupby和索引,可以高效执行高级数据操作,如按组索引、迭代和过滤。
Python数据分析:pandas中Dataframe的groupby与索引用法
2024-04-02

python数据分析之怎么用pandas搞定Excel表格

本篇内容主要讲解“python数据分析之怎么用pandas搞定Excel表格”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python数据分析之怎么用pandas搞定Excel表格”吧!(一)读
2023-06-30

Python数据分析之pandas比较操作

目录一、比较运算符和比较方法二、两个DataFrame比较三、两个Series比较四、与数字或字符串比较五、与array进行比较一、比较运算符和比较方法 比较运算符用于判断是否相等和比较大小,Python中的比较运算符有==、!=、<、>、
2022-06-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录