我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Java回溯法解决全排列问题流程详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Java回溯法解决全排列问题流程详解

题目描述:

给定一不重复的数组,返回其具有的所有全排列(使用 List<List > 返回)

思路:

以数组 nums = [1, 2, 3] 为例,其具有的解空间可以用这样一棵树表示,相比看到这里大家就可以知道,这是一道可以用 回溯法 解决的题。

难点:如何保证不选到已经使用过的数组元素 —— 使用 used[] 数组标记该元素是否被使用过

细节请看代码注释

    // 用于存储结果的数组
    List<List<Integer>> ans = new ArrayList<List<Integer>>();
    public List<List<Integer>> permute(int[] nums) {
        List<Integer> list = new ArrayList<>();
        boolean[] used = new boolean[nums.length];
        backTrack(nums, list, used);
        return ans;
    }
    // 回溯法参数: nums为待排列数组, list存储当前排列结果, used[]标记当前元素是否被使用过
    public void backTrack(int[] nums, List<Integer> list, boolean[] used){
        // 回溯法退出条件,list大小为nums[]长度,即所有元素都已加入排列
        if(list.size() == nums.length){
            // 加入结果数组,注意要 new 新的list (List为按指针所指地址存储,不然每次加的都是同一个)
            ans.add(new ArrayList(list));
            return;
        }
        // 循环以每个元素开始排列
        for(int i=0; i<nums.length; i++){
            // 元素未被使用过加入排列
            if(!used[i]){
                // 在排列中加入当前元素,并将used[i]修改为true
                list.add(nums[i]);
                used[i] = true;
                // 递归调用 backTrack
                backTrack(nums, list, used);
                // 回溯,去掉当前元素,并将used置为false
                list.remove(list.size() - 1);
                used[i] = false;
            }
        }
    }

变式一

题目描述:给定一具有重复数字的序列, 返回所有不重复的全排列

示例:

这道题是全排列的变式题, 只需要对全排列写法加入对重复情况去除的判断即可,于是本题的重心转移到了如何判断是否会产生重复序列。

我们可以思考什么情况会产生重复序列, 我们先对 nums[] 按从小到大排序, 限制每次填入的数字都是重复数字的从左到右的第一个数字

class Solution {
    Boolean[] visit;
    List<List<Integer>> ans;
    public List<List<Integer>> permuteUnique(int[] nums) {
        visit = new Boolean[nums.length];
        Arrays.fill(visit, false);
        List<Integer> list = new ArrayList<>();
        ans = new ArrayList<>();
        Arrays.sort(nums);
        backTrack(nums, list);
        return ans;
    }
    public void backTrack(int[] nums, List<Integer> list){
        if(nums.length == list.size()){
            ans.add(new ArrayList(list));
            return;
        }
        for(int i=0; i<nums.length; i++){
            // 当前元素用过 + 限制每轮填入的字符都是重复字符的从左到右的第一个字符
            if(visit[i] || (i > 0 && !visit[i-1] && nums[i] == nums[i-1])){
                continue;
             }
            list.add(nums[i]);
            visit[i] = true;
            backTrack(nums, list);
            visit[i] = false;
            list.remove(list.size() - 1);
        }
    }
}

变式:字符排序

class Solution {
    List<String> ans = new ArrayList<>();
    public String[] permutation(String s) {
        // 思路: 回溯法典型例题 —— 含重复问题
        char[] array = s.toCharArray();
        Arrays.sort(array);
        Boolean[] used = new Boolean[array.length];
        Arrays.fill(used, false);
        backTack(array, used, new StringBuilder());
        String[] res = new String[ans.size()];
        for(int i=0; i<ans.size(); i++){
            res[i] = ans.get(i);
        }
        return res;
    }
    public void backTack(char[] array, Boolean[] used, StringBuilder sb){
        if(array.length == sb.length()){
            ans.add(new String(sb));
        }
        for(int i=0; i<array.length; i++){
           if(used[i]){
               continue;
           }
           if(i>0 && array[i]==array[i-1] && !used[i-1]){
               continue;
           }
            sb.append(array[i]);
            used[i] = true;
            backTack(array, used, sb);
            sb.deleteCharAt(sb.length() - 1);
            used[i] = false;
        }
    }
}

到此这篇关于Java回溯法解决全排列问题流程详解的文章就介绍到这了,更多相关Java回溯法 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Java回溯法解决全排列问题流程详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++回溯算法中的全排列问题怎么解决

本文小编为大家详细介绍“C++回溯算法中的全排列问题怎么解决”,内容详细,步骤清晰,细节处理妥当,希望这篇“C++回溯算法中的全排列问题怎么解决”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。一、全排列全排列的特点
2023-07-05

Java基于递归解决全排列问题算法示例

本文实例讲述了Java基于递归解决全排列问题算法。分享给大家供大家参考,具体如下:排列问题设R={r1,r2,...,rn}是要进行排列的n个元素,Ri=R-{ri}。集合x中元素的全排列记为Perm(X)。(ri)Perm(X)表示在全排
2023-05-30

Java多线程编程中的并发安全问题及解决方法

保障多线程并发安全,解决线程同步与锁竞争问题,提高应用性能与可靠性。多线程编程需要考虑线程安全性,使用同步机制保证共享变量的一致性,避免线程竞争导致的数据不一致与死锁等问题。常用的同步机制包括synchronized、ReentrantLock、volatile等
2023-05-16

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录