我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Tensorflow 2.4加载处理图片的三种方式详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Tensorflow 2.4加载处理图片的三种方式详解

前言

本文通过使用 cpu 版本的 tensorflow 2.4 ,介绍三种方式进行加载和预处理图片数据。

这里我们要确保 tensorflow 在 2.4 版本以上 ,python 在 3.8 版本以上,因为版本太低有些内置函数无法使用,然后要提前安装好 pillow 和 tensorflow_datasets ,方便进行后续的数据加载和处理工作。

由于本文不对模型进行质量保证,只介绍数据的加载、处理过程,所以只将模型简单训练即可。

数据准备

首先我们先准备本文的图片数据,这里我们直接使用 tensorflow 的内置函数,从网络上面下载了一份花朵照片数据集,也可以直接用下面的链接使用迅雷下载。

数据目录里面包含 5 个子目录,每个子目录对应一个类,分别是雏菊、蒲公英、玫瑰、向日葵、郁金香,图片总共有 3670 张。

import pathlib
import numpy as np
import os
import PIL
import PIL.Image
import tensorflow as tf
import tensorflow_datasets as tfds
dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
data_dir = tf.keras.utils.get_file(origin=dataset_url, fname='flower_photos', untar=True)
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('**'), shuffle=False)
datas = datas.shuffle(image_count, reshuffle_each_iteration=False)
val_size = int(image_count * 0.2)
train_datas = datas.skip(val_size)
val_datas = datas.take(val_size)

(3)对训练集和测试集中的每条数据都进行处理,获得最终的图片内容和对应的图片标签:

每张图片的标签,都是通过对每张图片的绝对路径中提取出来的,使用 \ 分隔符将绝对路径分割成列表,然后取倒数第二个字符串就是其类别标签,并将其转换成 one-hot 向量

每张图片的内容都是通过加载绝对路径,将加载出来的图片内容像素进行指定 height、width 的大小调整进行变化的

  def get_label(file_path):
      parts = tf.strings.split(file_path, os.path.sep)
      return tf.argmax(parts[-2] == class_names)
  def decode_img(img):
      return tf.image.resize(tf.io.decode_jpeg(img, channels=3), [height, width])
  def process_path(file_abs_path):
      label = get_label(file_abs_path)
      img = decode_img(tf.io.read_file(file_abs_path))
      return img, label
  train_datas = train_datas.map(process_path, num_parallel_calls=AUTOTUNE)
  val_datas = val_datas.map(process_path, num_parallel_calls=AUTOTUNE)

(4)将获得的测试集和训练集通过 cache() 保存于内存中,并同样使用 prefetch() 提前加载要使用的数据,使用 shuffle() 将数据进行打散,使用 batch() 每次获取 batch_size 个样本。

(5)使用训练数据训练 5 个 epoch ,并使用验证集进行指标评估 。由于 model 已经被上面的数据进行过训练,所以这里训练过程中从一开始就能看出来 val_accuracy较高。

def configure_for_performance(ds):
    ds = ds.cache().prefetch(buffer_size=AUTOTUNE)
    ds = ds.shuffle(buffer_size=1000).batch(batch_size)
    return ds
train_datas = configure_for_performance(train_datas)
val_datas = configure_for_performance(val_datas)
model.fit( train_datas, validation_data=val_datas, epochs=5 )

结果输出:

Epoch 1/5
92/92 [==============================] - 11s 118ms/step - loss: 0.1068 - accuracy: 0.9680 - val_loss: 0.1332 - val_accuracy: 0.9537
Epoch 2/5
92/92 [==============================] - 10s 113ms/step - loss: 0.0893 - accuracy: 0.9721 - val_loss: 0.0996 - val_accuracy: 0.9673
...
Epoch 5/5
92/92 [==============================] - 10s 112ms/step - loss: 0.0328 - accuracy: 0.9939 - val_loss: 0.1553 - val_accuracy: 0.9550

从网络上下载数据

上面的两个方式都是从本地读取磁盘数据,除此之外我们还可以通过网络来获取数据并进行处理,tfds 中为我们准备了很多种类的数据,包括音频、文本、图片、视频、翻译等数据,通过内置函数 tfds.load 从网络上即可下载指定的数据,这里我们从网络上下载了 tf_flowers 数据,其实就是我们上面用到的磁盘中的花朵磁盘数据数据。

(train_datas, val_datas, test_datas), metadata = tfds.load(  'tf_flowers', split=['train[:70%]', 'train[70%:90%]', 'train[90%:]'], with_info=True, as_supervised=True)
train_datas = configure_for_performance(train_datas)
val_datas = configure_for_performance(val_datas)
test_datas = configure_for_performance(test_datas)

加载出来数据之后,后面处理的方式可以自行选择,和上面的两种大同小异。

以上就是Tensorflow 2.4加载处理图片的三种方式详解的详细内容,更多关于Tensorflow 加载处理图片的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Tensorflow 2.4加载处理图片的三种方式详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Tensorflow 2.4加载处理图片的三种方式详解

这篇文章主要为大家介绍了Tensorflow 2.4加载处理图片的三种方式详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-11-21

详解三种Javascript图片预加载的方法

预加载图片是提高用户体验的一个很好方法。图片预先加载到浏览器中,访问者便可顺利地在你的网站上冲浪,并享受到极快的加载速度。

HBase协处理器加载的三种方式

本文主要给大家罗列了HBase协处理器加载的三种方式:Shell加载(动态)、Api加载(动态)、配置文件加载(静态)。其中静态加载方式需要重启HBase。我们假设我们已经有一个现成的需要加载的协处理器Jar包:HelloCoprocessor-0.0.1.j
HBase协处理器加载的三种方式
2014-07-01

vue3 图片懒加载的两种方式、IntersectionObserver和useIntersectionObserver实例详解

这篇文章主要介绍了vue3 图片懒加载的两种方式、IntersectionObserver和useIntersectionObserver实例详解,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下
2023-03-19

springMVC图片上传的处理方式详解

本文实例为大家分享了springMVC图片上传的处理方式,供大家参考,具体内容如下首先需要依赖的jar包:  commons-io  commons-io
2023-05-31

详解Spring全局异常处理的三种方式

在J2EE项目的开发中,不管是对底层的数据库操作过程,还是业务层的处理过程,还是控制层的处理过程,都不可避免会遇到各种可预知的、不可预知的异常需要处理。每个过程都单独处理异常,系统的代码耦合度高,工作量大且不好统一,维护的工作量也很大。 那
2023-05-31

前端图片懒加载的原理与3种实现方式举例

图片懒加载又称图片延时加载、惰性加载,即在用户需要使用图片的时候加载,这样可以减少请求,节省带宽,提高页面加载速度,相对的,也能减少服务器压力,下面这篇文章主要给大家介绍了关于前端图片懒加载的原理与3种实现方式的相关资料,需要的朋友可以参考下
2023-03-01

详解Vue自定义指令如何实现处理图片加载失败的碎图

这篇文章主要介绍了详解Vue自定义指令如何实现处理图片加载失败的碎图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
2023-02-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录