我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python多进程之进程同步及通信详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python多进程之进程同步及通信详解

上篇文章介绍了什么是进程、进程与程序的关系、进程的创建与使用、创建进程池等,接下来就来介绍一下进程同步及进程通信。

进程同步

当多个进程使用同一份数据资源的时候,因为进程的运行没有顺序,运行起来也无法控制,如果不加以干预,往往会引发数据安全或顺序混乱的问题,所以要在多个进程读写共享数据资源的时候加以适当的策略,来保证数据的一致性问题。

Lock(锁)

一个Lock对象有两个方法:acquire()和release()来控制共享数据的读写权限, 看下面这张图片,使用多进程的时候会经常出现这种情况,这是因为多个进程都在抢占输出资源,共享同一打印终端,从而造成了输出信息的错乱。

image.png

那么就可以使用Lock机制:


import multiprocessing
import random
import time
def work(lock, i):
    lock.acquire()
    print("work'{}'执行中......".format(i), multiprocessing.current_process().name, multiprocessing.current_process().pid)
    time.sleep(random.randint(0, 2))
    print("work'{}'执行完毕......".format(i))
    lock.release()
if __name__ == '__main__':
    lock = multiprocessing.Lock()
    for i in range(5):
        p = multiprocessing.Process(target=work, args=(lock, i))
        p.start()

由于引入了Lock机制,同一时间只能有一个进程抢占到输出资源,其他进程等待该进程结束,锁释放到,才可以抢占,这样会解决多进程间资源竞争导致数据错乱的问题,但是由并发执行变成了串行执行,会牺牲运行效率。

进程通信

上篇文章说过,进程之间互相隔离,数据是独立的,默认情况下互不影响,那要如何实现进程间通信呢?Python提供了多种进程通信的方式,下面就来说一下。

Queue(队列)

multiprocessing模块提供的Queue多进程安全的消息队列,可以实现多进程之间的数据传递。

说明

  • 初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最⼤可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头)。
  • Queue.qsize():返回当前队列包含的消息数量。
  • Queue.empty():如果队列为空,返回True,反之False。
  • Queue.full():如果队列满了,返回True,反之False。
  • Queue.get(block, timeout):获取队列中的⼀条消息,然后将其从列队中移除,block默认值为True。如果block使⽤默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为⽌,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出Queue.Empty异常;如果block值为False,消息列队如果为空,则会⽴刻抛出Queue.Empty异常。
  • Queue.get_nowait():相当Queue.get(False)。
  • Queue.put(item, block, timeout):将item消息写⼊队列,block默认值为True,如果block使⽤默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写⼊,此时程序将被阻塞(停在写⼊状态),直到消息列队腾出空间为⽌,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出Queue.Full异常;如果block值为False,消息列队如果没有空间可写⼊,则会⽴刻抛出Queue.Full异常。
  • Queue.put_nowait(item):相当于Queue.put(item, False)。

from multiprocessing import Process, Queue
import time
def write_task(queue):
    """
    向队列中写入数据
    :param queue: 队列
    :return:
    """
    for i in range(5):
        if queue.full():
            print("队列已满!")
        message = "消息{}".format(str(i))
        queue.put(message)
        print("消息{}写入队列".format(str(i)))
def read_task(queue):
    """
    从队列读取数据
    :param queue: 队列
    :return:
    """
    while True:
        print("从队列读取:{}".format(queue.get(True)))
if __name__ == '__main__':
    print("主进程执行......")
    # 主进程创建Queue,最大消息数量为3
    queue = Queue(3)
    pw = Process(target=write_task, args=(queue, ))
    pr = Process(target=read_task, args=(queue, ))
    pw.start()
    pr.start()

运行结果为:

image.png

从结果我们可以看出,队列最大可以放入3条消息,后面再来消息,要等read_task从队列里取出后才行。

Pipe(管道)

Pipe常用于两个进程,两个进程分别位于管道的两端,Pipe(duplex)方法返回(conn1,conn2)代表一个管道的两端,duplex参数默认为True,即全双工模式,若为False,conn1只负责接收信息,conn2负责发送。

send()和recv()方法分别是发送和接受消息的方法。


import multiprocessing
import time
import random
def proc_send(pipe):
    """
    发送消息
    :param pipe:管道一端
    :return:
    """
    for i in range(10):
        print("process send:{}".format(str(i)))
        pipe.send(i)
        time.sleep(random.random())
def proc_recv(pipe):
    """
    接收消息
    :param pipe:管道一端
    :return:
    """
    while True:
        print("Process recv:{}".format(pipe.recv()))
        time.sleep(random.random())
if __name__ == '__main__':
    # 主进程创建pipe
    pipe = multiprocessing.Pipe()
    p1 = multiprocessing.Process(target=proc_send,args=(pipe[0], ))
    p2 = multiprocessing.Process(target=proc_recv,args=(pipe[1], ))
    p1.start()
    p2.start()
    p1.join()
    p2.terminate()

执行结果为:

image.png

Semaphore(信号量)

Semaphore用来控制对共享资源的访问数量,和进程池的最大连接数类似。


import multiprocessing
import random
import time
def work(s, i):
    s.acquire()
    print("work'{}'执行中......".format(i), multiprocessing.current_process().name, multiprocessing.current_process().pid)
    time.sleep(i*2)
    print("work'{}'执行完毕......".format(i))
    s.release()
if __name__ == '__main__':
    s = multiprocessing.Semaphore(2)
    for i in range(1, 7):
        p = multiprocessing.Process(target=work, args=(s, i))
        p.start()

上面的代码中使用Semaphore限制了最多有2个进程同时执行,那么来一个进程获得一把锁,计数加1,当计数等于2时,后面再来的进程均需要等待,等前面的进程释放掉,才可以获得锁。

信号量与进程池的概念上类似,但是要区分开来,信号量涉及到加锁的概念。

Event(事件)

Event用来实现进程间同步通信的。运行的机制是:全局定义了一个flag,如果flag值为False,当程序执行event.wait()方法时就会阻塞,如果flag值为True时,程序执行event.wait()方法时不会阻塞继续执行。

Event常⽤函数:

  • event.wait():在进程中插入一个标记(flag),默认为False,可以设置timeout。
  • event.set():使flag为Ture。
  • event.clear():使flag为False。
  • event.is_set():判断flag是否为True。

import multiprocessing
import time
def wait_for_event(e):
    print("wait_for_event执行")
    e.wait()
    print("wait_for_event: e.is_set():{}".format(e.is_set()))
def wait_for_event_timeout(e, t):
    print("wait_for_event_timeout执行")
    # 只会阻塞2s
    e.wait(t)
    print("wait_for_event_timeout:e.is_set:{}".format(e.is_set()))
if __name__ == "__main__":
    e = multiprocessing.Event()
    p1 = multiprocessing.Process(target=wait_for_event, args=(e,))
    p1.start()
    p2 = multiprocessing.Process(target=wait_for_event_timeout, args=(e, 2))
    p2.start()
    time.sleep(4)
    # 4s之后使用e.set()将flag设为Ture
    e.set()
    print("主进程:flag设置为True")

执行结果如下:

image.png

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注编程网的更多内容!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python多进程之进程同步及通信详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python实现进程同步和通信

引例:如之前创建多进程的例子# -*- coding:utf-8 -*-from multiprocessing import Process,Poolimport os,timedef run_proc(name): ##定
2023-01-31

Android Activity与Service通信(不同进程之间)详解

在Android中,Activity主要负责前台页面的展示,Service主要负责需要长期运行的任务,所以在我们实际开发中,就会常常遇到Activity与Service之间的通信,我们一般在Activity中启动后台Service,通过In
2022-06-06

Python多进程,同步互斥,信号量,锁

进程补充进程间的信号信号量(信号灯)进程的同步互斥Event事件Lock 锁进程间的信号信号是唯一的异步通信方法一个进程向另一个进程发送一个信号来传递某种信息,接受者根据传递的信息来做相应的事$ kill -l查看系统信号说明$ kill
2023-01-30

Python进程间通信之共享内存详解

前一篇博客说了怎样通过命名管道实现进程间通信,但是要在windows是使用命名管道,需要使用python调研windows api,太麻烦,于是想到是不是可以通过共享内存的方式来实现。查了一下,Python中可以使用mmap模块来实现这一功
2022-06-04

python并发编程之多进程、多线程、异步和协程详解

最近学习python并发,于是对多进程、多线程、异步和协程做了个总结。 一、多线程多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行。即使是单CPU的计算机,也可以通过不停地在不同线程的指令
2022-06-04

python多进程实现进程间通信实例

python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事
2022-06-04

Python多进程并发与同步机制超详细讲解

进程(Process),顾名思义,就是进行中的程序。有一句话说得好:程序是一个没有生命的实体,只有处理器赋予程序生命时,它才能成为一个活动的实体。进程是资源分配的最小单元,也就是说每个进程都有其单独的内存空间
2022-12-23

Java学习之线程同步与线程间通信详解

这篇文章主要为大家详细介绍了线程同步和线程之间的通信的相关知识,文中的示例代码讲解详细,对我们学习Java有一定的帮助,感兴趣的可以了解一下
2022-12-27

Android进程通信之Messenger和AIDL使用详解

1. 前言 提到的进程间通信(IPC:Inter-Process Communication),在Android系统中,一个进程是不能直接访问另一个进程的内存的,需要提供一些机制在不同的进程之间进行通信,Android官方推出了AIDL(A
2022-06-06

C++进程链接工具之通信器详解

本文主要介绍了C++通信器的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2022-11-21

Python进程间通信之共享内存

前一篇博客说了怎样通过命名管道实现进程间通信,但是要在windows是使用命名管道,需要使用python调研windows api,太麻烦,于是想到是不是可以通过共享内存的方式来实现。查了一下,Python中可以使用mmap模块来实现这一功
2023-01-31

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录