我的编程空间,编程开发者的网络收藏夹
学习永远不晚

PythonPandas处理CSV文件的常用技巧分享

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

PythonPandas处理CSV文件的常用技巧分享

Pandas处理CSV文件,分为以下几步:

  • 读取Pandas文件
  • 统计列值出现的次数
  • 筛选特定列值
  • 遍历数据行
  • 绘制直方图(柱状图)

读取Pandas文件

df = pd.read_csv(file_path, encoding='GB2312')
print(df.info())

注意:Pandas的读取格式默认是UTF-8,在中文CSV中会报错:

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd1 in position 2: invalid continuation byte

修改编码为 GB2312 ,即可,或者忽略encode转义错误,如下:

df = pd.read_csv(file_path, encoding='GB2312')
df = pd.read_csv(file_path, encoding='unicode_escape')

df.info()显示df的基本信息,例如:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3840 entries, 0 to 3839
Data columns (total 16 columns):
 #   Column         Non-Null Count  Dtype  
---  ------         --------------  -----  
 0   实验时间批次         3840 non-null   object 
 1   物镜倍数           3840 non-null   object 
 2   板子编号           3840 non-null   object 
 3   板子编号及物镜倍数      3840 non-null   object 
 4   图名称            3840 non-null   object 
 5   细胞类型           3840 non-null   object 
 6   板子孔位置          3840 non-null   object 
 7   孔拍摄位置          3840 non-null   int64  
 8   细胞培养基          3840 non-null   object 
 9   细胞培养时间(小时)     3840 non-null   int64  
 10  扰动类别           3840 non-null   object 
 11  扰动处理时间(小时)     3840 non-null   int64  
 12  扰动处理浓度(ug/ml)  3840 non-null   float64
 13  标注激活(1/0)      3840 non-null   int64  
 14  unique         3840 non-null   object 
 15  tvt            3840 non-null   int64  
dtypes: float64(1), int64(5), object(10)
memory usage: 480.1+ KB

统计列值出现的次数

df[列名].value_counts(),如df["扰动类别"].value_counts():

df["扰动类别"].value_counts()

输出:

coated OKT3                720
OKT3                       720
coated OKT3+anti-CD28      576
DMSO                       336
anti-CD28                  288
PBS                        288
Nivo                       288
Pemb                       288
empty                      192
coated OKT3 + anti-CD28    144
Name: 扰动类别, dtype: int64

直接绘制value_counts()的柱形图,参考Pandas - Chart Visualization:

import matplotlib.pyplot as plt
%matplotlib inline

plt.close("all")
plt.figure(figsize=(20, 8))
df["扰动类别"].value_counts().plot(kind="bar")
# plt.xticks(rotation='vertical', fontsize=10)
plt.show()

柱形图:

筛选特定列值

df.loc[筛选条件],筛选特定列值之后,重新赋值,只处理筛选值,也可以写入csv文件。

df_plate1 = df.loc[df["板子编号"] == "plate1"]
df_plate1.info()
# df.loc[df["板子编号"] == "plate1"].to_csv("batch3_IOStrain_klasses_utf8_plate1.csv")  # 存储CSV文件

注意:筛选的内外两个df需要相同,否则报错

pandas loc IndexingError: Unalignable boolean Series provided as indexer (index of the boolean Series and of the indexed object do not match).

输出,数据量由3840下降为1280。

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1280 entries, 0 to 1279
Data columns (total 16 columns):
 #   Column         Non-Null Count  Dtype  
---  ------         --------------  -----  
 0   实验时间批次         1280 non-null   object 
 1   物镜倍数           1280 non-null   object 
 2   板子编号           1280 non-null   object 
 3   板子编号及物镜倍数      1280 non-null   object 
 4   图名称            1280 non-null   object 
 5   细胞类型           1280 non-null   object 
 6   板子孔位置          1280 non-null   object 
 7   孔拍摄位置          1280 non-null   int64  
 8   细胞培养基          1280 non-null   object 
 9   细胞培养时间(小时)     1280 non-null   int64  
 10  扰动类别           1280 non-null   object 
 11  扰动处理时间(小时)     1280 non-null   int64  
 12  扰动处理浓度(ug/ml)  1280 non-null   float64
 13  标注激活(1/0)      1280 non-null   int64  
 14  unique         1280 non-null   object 
 15  tvt            1280 non-null   int64  
dtypes: float64(1), int64(5), object(10)
memory usage: 170.0+ KB

遍历数据行

for idx, row in df_plate1_lb0.iterrows():,通过row[“列名”],输出具体的值,如下:

for idx, row in df_plate1_lb0.iterrows():
    img_name = row["图名称"]
    img_ch_format = img_format.format(img_name, "{}")
    for i in range(1, 7):
        img_path = os.path.join(plate1_img_folder, img_ch_format.format(i))
        img = cv2.imread(img_path)
        print('[Info] img shape: {}'.format(img.shape))
    break

输出:

[Info] img shape: (1080, 1080, 3)
[Info] img shape: (1080, 1080, 3)
[Info] img shape: (1080, 1080, 3)
[Info] img shape: (1080, 1080, 3)
[Info] img shape: (1080, 1080, 3)
[Info] img shape: (1080, 1080, 3)

绘制直方图(柱状图)

统计去除背景颜色的灰度图字典

# 去除背景颜色
pix_bkg = np.argmax(np.bincount(img_gray.ravel()))
img_gray = np.where(img_gray <= pix_bkg + 2, 0, img_gray)
img_gray = img_gray.astype(np.uint8)

# 生成数值数组
hist = cv2.calcHist([img_gray], [0], None, [256], [0, 256]) 
hist = hist.ravel()

# 数值字典
hist_dict = collections.defaultdict(int)
for i, v in enumerate(hist):
    hist_dict[i] += int(v)

# 去除背景颜色,已经都统计到0,所以0值非常大,删除0值,观察分布
hist_dict[0] = 0

绘制柱状图:

  • plt.subplots:设置多个子图,figsize背景尺寸,facecolor背景颜色
  • ax.set_title:设置标题
  • ax.bar:x轴的值,y轴的值
  • ax.set_xticks:x轴的显示间隔
  • plt.savefig:存储图像
  • plt.show:展示
fig, ax = plt.subplots(1, 1, figsize=(10, 8), facecolor='white')
ax.set_title('channel {}'.format(ci))
n_bins = 100
ax.bar(range(n_bins+1), [hist_dict.get(xtick, 0) for xtick in range(n_bins+1)])
ax.set_xticks(range(0, n_bins, 5))

plt.savefig(res_path)
plt.show()

效果:

到此这篇关于Python Pandas处理CSV文件的常用技巧分享的文章就介绍到这了,更多相关Pandas处理CSV文件内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

PythonPandas处理CSV文件的常用技巧分享

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python处理CSV文件的高效方法与技巧

python 提供了高效的 csv 模块来处理 csv 文件。可以通过以下步骤进行操作:安装 csv 模块。使用 csv.reader() 读取 csv 文件。逐行高效处理大文件。读写内存中的 csv 文件,提高处理速度。使用 csv.wr
Python处理CSV文件的高效方法与技巧
2024-04-03

Python读取CSV数据的实用技巧分享

python 中读取 csv 数据的方法分两种:内置 csv 模块,适用于小型 csv 文件,按行迭代数据;pandas 库,提供 read_csv() 函数,可轻松将 csv 数据加载到 dataframe 中进行处理。Python 读取
Python读取CSV数据的实用技巧分享
2024-04-04

MyEclipse常用的使用技巧分享

这篇文章主要介绍“MyEclipse常用的使用技巧分享”,在日常操作中,相信很多人在MyEclipse常用的使用技巧分享问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”MyEclipse常用的使用技巧分享”的疑
2023-06-17

Python中文件I/O高效操作处理的技巧分享

如何读写文本文件? 实际案例 某文本文件编码格式已直(如UTF-8,GBK,BIG5),在python2.x和python3.x中分别如何读取这些文件? 解决方案 字符串的语义发生了变化:python2python3strbytesunic
2022-06-04

linux系统常用的技巧分享

这篇文章主要介绍“linux系统常用的技巧分享”,在日常操作中,相信很多人在linux系统常用的技巧分享问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”linux系统常用的技巧分享”的疑惑有所帮助!接下来,请跟
2023-06-13

Linux文件处理常用命令操作技巧

我是Linux初学者,做个笔记,以下是Linux几个常用文件处理命令: 命令提示符 [root@localhost~]# 其中:root 表示当前登录用户localhost     表示主机
2022-06-04

Python轻松管理与操作文件的技巧分享

在日常开发中,我们经常会遇到需要对文件进行操作的场景,如读写文件、文件夹操作等。本文将为大家介绍一些Python中处理文件的实用技巧,让你的工作更高效
2023-05-19

Python中字符串的处理技巧分享

一、如何拆分含有多种分隔符的字符串? 实际案例我们要把某个字符串依据分隔符号拆分不同的字符段,该字符串包含多种不同的分隔符,例如:s = 'asd;aad|dasd|dasd,sdasd|asd,,Adas|sdasd;Asdasd,d|a
2022-06-04

处理Oracle导入中文乱码问题的技巧分享

处理Oracle导入中文乱码问题的技巧分享在使用Oracle数据库进行数据导入的过程中,经常会遇到中文数据出现乱码的情况。这可能是由于字符集不匹配、数据源编码问题或者数据库配置错误等原因导致的。为了解决这个问题,本文将分享一些处理Orac
处理Oracle导入中文乱码问题的技巧分享
2024-03-09

Python 异常处理技巧分享,让你成为代码高手

:Python异常处理技巧是细化处理程序设计和运行时的关键环节。它能够识别,捕捉和处理错误信息或事件,避免程序中断或异常终止,从而增强程序的鲁棒性和可靠性。本文将探讨一些高级的Python异常处理技巧,包括错误处理、自定义异常和日志记录,以帮助程序员成为代码高手。
Python 异常处理技巧分享,让你成为代码高手
2024-02-24

Golang实现文件编码修改的技巧分享

如何修改文件编码?使用 ioutil.readfile 和 io.writestring 读取和写入文件,并指定新的编码。使用 bufio.reader 和 bufio.writer 逐行读取和写入文件,并创建具有不同编码的对象。使用 os
Golang实现文件编码修改的技巧分享
2024-04-04

Python文件操作和异常处理的方法和技巧

本文介绍了Python文件操作和异常处理的方法和技巧,包括读写文本文件、读写二进制文件、文件指针、异常类型和处理、try-except语句、异常处理程序等内容,帮助读者更好地掌握Python在文件操作和异常处理方面的应用
2023-05-19

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录