scipy.interpolate插值方法实例讲解
scipy.interpolate插值方法
1 一维插值
from scipy.interpolate import interp1d
1维插值算法
from scipy.interpolate import interp1d
x = np.linspace(0, 10, num=11, endpoint=True)
y = np.cos(-x**2/9.0)
f = interp1d(x, y)
f2 = interp1d(x, y, kind='cubic')
xnew = np.linspace(0, 10, num=41, endpoint=True)
import matplotlib.pyplot as plt
plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '--')
plt.legend(['data', 'linear', 'cubic'], loc='best')
plt.show()
数据点,线性插值结果,cubic插值结果:
2 multivariate data
from scipy.interpolate import interp2d
from scipy.interpolate import griddata
多为插值方法,可以应用在2Dlut,3Dlut的生成上面,比如当我们已经有了两组RGB映射数据, 可以插值得到一个查找表。
二维插值的例子如下:
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
from scipy.interpolate import griddata, RegularGridInterpolator, Rbf
if __name__ == "__main__":
x_edges, y_edges = np.mgrid[-1:1:21j, -1:1:21j]
x = x_edges[:-1, :-1] + np.diff(x_edges[:2, 0])[0] / 2.
y = y_edges[:-1, :-1] + np.diff(y_edges[0, :2])[0] / 2.
# x_edges, y_edges 是 20个格的边缘的坐标, 尺寸 21 * 21
# x, y 是 20个格的中心的坐标, 尺寸 20 * 20
z = (x + y) * np.exp(-6.0 * (x * x + y * y))
print(x_edges.shape, x.shape, z.shape)
plt.figure()
lims = dict(cmap='RdBu_r', vmin=-0.25, vmax=0.25)
plt.pcolormesh(x_edges, y_edges, z, shading='flat', **lims) # plt.pcolormesh(), plt.colorbar() 画图
plt.colorbar()
plt.title("Sparsely sampled function.")
plt.show()
# 使用grid data
xnew_edges, ynew_edges = np.mgrid[-1:1:71j, -1:1:71j]
xnew = xnew_edges[:-1, :-1] + np.diff(xnew_edges[:2, 0])[0] / 2. # xnew其实是 height new
ynew = ynew_edges[:-1, :-1] + np.diff(ynew_edges[0, :2])[0] / 2.
grid_x, grid_y = xnew, ynew
print(x.shape, y.shape, z.shape)
points = np.hstack((x.reshape(-1, 1), y.reshape(-1, 1)))
z1 = z.reshape(-1, 1)
grid_z0 = griddata(points, z1, (grid_x, grid_y), method='nearest').squeeze()
grid_z1 = griddata(points, z1, (grid_x, grid_y), method='linear').squeeze()
grid_z2 = griddata(points, z1, (grid_x, grid_y), method='cubic').squeeze()
rbf = Rbf(points[:, 0], points[:, 1], z, epsilon=2)
grid_z3 = rbf(grid_x, grid_y)
plt.subplot(231)
plt.imshow(z.T, extent=(-1, 1, -1, 1), origin='lower')
plt.plot(points[:, 0], points[:, 1], 'k.', ms=1)
plt.title('Original')
plt.subplot(232)
plt.imshow(grid_z0.T, extent=(-1, 1, -1, 1), origin='lower')
plt.title('Nearest')
plt.subplot(233)
plt.imshow(grid_z1.T, extent=(-1, 1, -1, 1), origin='lower', cmap='RdBu_r')
plt.title('Linear')
plt.subplot(234)
plt.imshow(grid_z2.T, extent=(-1, 1, -1, 1), origin='lower')
plt.title('Cubic')
plt.subplot(235)
plt.imshow(grid_z3.T, extent=(-1, 1, -1, 1), origin='lower')
plt.title('rbf')
plt.gcf().set_size_inches(8, 6)
plt.show()
示例2:
def func(x, y):
return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2
grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]
rng = np.random.default_rng()
points = rng.random((1000, 2))
values = func(points[:,0], points[:,1])
from scipy.interpolate import griddata
grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')
import matplotlib.pyplot as plt
plt.subplot(221)
plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
plt.plot(points[:,0], points[:,1], 'k.', ms=1)
plt.title('Original')
plt.subplot(222)
plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
plt.title('Nearest')
plt.subplot(223)
plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
plt.title('Linear')
plt.subplot(224)
plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
plt.title('Cubic')
plt.gcf().set_size_inches(6, 6)
plt.show()
3 Multivariate data interpolation on a regular grid
from scipy.interpolate import RegularGridInterpolator
已知一些grid上的值。
可以应用在2Dlut,3Dlut,当我们已经有了一个多维查找表,然后整个图像作为输入,得到查找和插值后的输出。
二维网格插值方法(好像和resize的功能比较一致)
# 使用RegularGridInterpolator
import matplotlib.pyplot as plt
from scipy.interpolate import RegularGridInterpolator
def F(u, v):
return u * np.cos(u * v) + v * np.sin(u * v)
fit_points = [np.linspace(0, 3, 8), np.linspace(0, 3, 8)]
values = F(*np.meshgrid(*fit_points, indexing='ij'))
ut, vt = np.meshgrid(np.linspace(0, 3, 80), np.linspace(0, 3, 80), indexing='ij')
true_values = F(ut, vt)
test_points = np.array([ut.ravel(), vt.ravel()]).T
interp = RegularGridInterpolator(fit_points, values)
fig, axes = plt.subplots(2, 3, figsize=(10, 6))
axes = axes.ravel()
fig_index = 0
for method in ['linear', 'nearest', 'linear', 'cubic', 'quintic']:
im = interp(test_points, method=method).reshape(80, 80)
axes[fig_index].imshow(im)
axes[fig_index].set_title(method)
axes[fig_index].axis("off")
fig_index += 1
axes[fig_index].imshow(true_values)
axes[fig_index].set_title("True values")
fig.tight_layout()
fig.show()
plt.show()
4 Rbf 插值方法
interpolate scattered 2-D data
import numpy as np
from scipy.interpolate import Rbf
import matplotlib.pyplot as plt
from matplotlib import cm
# 2-d tests - setup scattered data
rng = np.random.default_rng()
x = rng.random(100) * 4.0 - 2.0
y = rng.random(100) * 4.0 - 2.0
z = x * np.exp(-x ** 2 - y ** 2)
edges = np.linspace(-2.0, 2.0, 101)
centers = edges[:-1] + np.diff(edges[:2])[0] / 2.
XI, YI = np.meshgrid(centers, centers)
# use RBF
rbf = Rbf(x, y, z, epsilon=2)
Z1 = rbf(XI, YI)
points = np.hstack((x.reshape(-1, 1), y.reshape(-1, 1)))
Z2 = griddata(points, z, (XI, YI), method='cubic').squeeze()
# plot the result
plt.figure(figsize=(20,8))
plt.subplot(1, 2, 1)
X_edges, Y_edges = np.meshgrid(edges, edges)
lims = dict(cmap='RdBu_r', vmin=-0.4, vmax=0.4)
plt.pcolormesh(X_edges, Y_edges, Z1, shading='flat', **lims)
plt.scatter(x, y, 100, z, edgecolor='w', lw=0.1, **lims)
plt.title('RBF interpolation - multiquadrics')
plt.xlim(-2, 2)
plt.ylim(-2, 2)
plt.colorbar()
plt.subplot(1, 2, 2)
X_edges, Y_edges = np.meshgrid(edges, edges)
lims = dict(cmap='RdBu_r', vmin=-0.4, vmax=0.4)
plt.pcolormesh(X_edges, Y_edges, Z2, shading='flat', **lims)
plt.scatter(x, y, 100, z, edgecolor='w', lw=0.1, **lims)
plt.title('griddata - cubic')
plt.xlim(-2, 2)
plt.ylim(-2, 2)
plt.colorbar()
plt.show()
得到结果如下, RBF一定程度上和 griddata可以互用, griddata方法比较通用
[1]https://docs.scipy.org/doc/scipy/tutorial/interpolate.html
到此这篇关于scipy.interpolate插值方法介绍的文章就介绍到这了,更多相关scipy.interpolate插值内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341